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Abstract

A computation tree of a program execution describes com-

putations of functions and their dependencies. A computa-

tion tree describes how a program works and is at the heart

of algorithmic debugging. To generate a computation tree,

existing algorithmic debuggers either use a complex imple-

mentation or yield a less informative approximation. We

present a method for lazy functional languages that requires

only a simple tracing library to generate a detailed computa-

tion tree. With our algorithmic debugger a programmer can

debug any Haskell program by only importing our library

and annotating suspected functions.

Categories and Subject Descriptors D.2.5 [Software En-

gineering]: Testing and Debugging

Keywords algorithmic debugging, lazy evaluation, tracing

1. Introduction

Consider the defective Haskell implementation of a par-

ity function in Figure 1. The program includes a property

prop notBothOdd for testing. Using the property-based

testing tool QuickCheck [9] we get:

> quickCheck prop_notBothOdd

*** Failed! Falsifiable (after 1 test): 2

So for argument value 2 the property does not hold.

Figure 2 shows a computation tree for evaluating the ex-

pression quickCheck prop notBothOdd. The special root

node ⋆ connects two subtrees. All other nodes of a compu-

tation tree are computation statements. A computation state-

ment is usually a function (identifier) applied to argument

[To appear in the proceeding of PLDI 2016.]

isOdd n = isEven (plusOne n)

isEven n = modTwo n == 0

plusOne n = n + 1

modTwo n = div n 2

prop_notBothOdd :: Int -> Bool

prop notBothOdd x = isOdd x /= isOdd (x+1)

Figure 1. A defective program with a test property.

⋆

isOdd 2 = False

plusOne 2 = 3

isEven 3 = False

modTwo 3 = 1

isOdd 3 = False

plusOne 3 = 4

isEven 4 = False

modTwo 4 = 2

Figure 2. Computation tree for prop notBothOdd 2.

values together with a result value. A computation statement

describes a subcomputation of the entire computation of the

program. In the tree a node is the parent of a child node, if

and only if the computation of the child contributes to the

computation of the parent. More precisely, the tree struc-

ture must have the following property of algorithmic debug-

ging: We call a computation statement right, if it agrees with

the intentions/expectations/specification of the programmer

for the program. Otherwise we call a computation statement

wrong. If a parent node is wrong but all its child nodes are

right, then the definition of the function appearing in the par-

ent node must be defective. In our example modTwo 4 = 2

is wrong and because that node has no children, the defini-

tion of modTwo must be defective, as indeed it is.

The function of a child node is not necessarily called by

the function of its parent node, although that is often the

case. Firstly, not all functions that contribute to an entire

computation have to appear in a computation tree. Usually

a computation tree contains only nodes for functions that the

programmer suspects of being defective; hence our example

tree has no nodes for, e.g., (+) or prop notBothOdd. Sec-

ondly, for higher-order functions at least two different def-
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initions for the parent-child relation of a computation tree

exist (cf. Section 6.1).

The ultimate goal of our research is to provide better

support for debugging lazy functional programs, which is

very needed [29, 32]. A computation tree is a key means

for understanding how a program works or why it does not

work. A computation tree is at the heart of the algorithmic

debugging method [26, 31].

In this paper we present a lightweight method for obtain-

ing a computation tree for a computation of a lazy func-

tional program. The method is lightweight in that it does not

require any complex implementation infrastructure such as

a modified compiler or runtime system. Note that the run-

time stack cannot be used to determine computation state-

ment is the child of which other computation statement: the

runtime stack of a lazily evaluated language relates to de-

mand and not the nesting of function calls; even for an ea-

gerly evaluated language the runtime stack differs for higher-

order functions from our desired parent-child relation. Fur-

thermore, our method does not require any changes to trusted

libraries and without additional work it supports a large set

of language features. Thus we can use our implementation

for debugging any Haskell program.

We start with Andy Gill’s lightweight value observation

technique for debugging Haskell programs [15]. Its imple-

mentation Hood is just a library. The programmer imports

the library in their program and annotates all expressions

of interest with Hood’s observe function. Hood guarantees

that the input-output behaviour of the executed program re-

mains unchanged, but after termination, Hood shows for ev-

ery annotated expression all the values the expression had

during the computation. Hood reconstructs these values from

a value observation trace, a simple sequence of events, that

Hood creates as a side-effect during the computation.

We can use Hood to obtain computation statements by

annotating functions. In this paper we show that the value

observation trace contains more information than previously

thought: from the value observation trace we can also recon-

struct the parent-child relation between computation state-

ments for a computation tree.

Consider annotating functions in our defective program

as shown in Figure 3.1 Figure 4 shows the simplified value

observation trace created by Hood when evaluating the ex-

pression quickCheck prop notBothOdd. The trace is a

sequence of events, written in the order in which the pro-

gram is evaluated. There are two main types of events: re-

quest and corresponding response events. When evaluation

of an expression starts, a request event is recorded (the value

of the expression is requested). When evaluation of an ex-

pression ends, a response event records the value of the ex-

pression. We call the pair of a corresponding request and

response event a request-response span.

1 The first argument of observe can be an arbitrary String, but we use the

function name to have it in the trace for constructing the computation tree.

isOdd = observe "isOdd" isOdd’

isOdd’ n = isEven (plusOne n)

isEven = observe "isEven" isEven’

isEven’ n = modTwo n == 0

plusOne = observe "plusOne" plusOne’

plusOne’ n = n + 1

modTwo = observe "modTwo" modTwo’

modTwo’ n = div n 2

prop_notBothOdd :: Int -> Bool

prop notBothOdd x = isOdd x /= isOdd (x+1)

Figure 3. Defective program with observation annotations.

• 1: request result of isOdd

• 2: request result of isEven

• 3: request result of modTwo

◦ 4: request argument of modTwo

◦ 5: request argument of isEven

• 6: request result of plusOne

◦ 7: request argument of plusOne

◦ 8: request argument of isOdd

◦ 9: response argument of isOdd is 2

◦ 10: response argument of plusOne is 2

• 11: response result of plusOne is 3

◦ 12: response argument of isEven is 3

◦ 13: response argument of modTwo is 3

• 14: response result of modTwo is 1

• 15: response result of isEven is False

• 16: response result of isOdd is False

• 17: request result of isOdd
...

...
...

...

• 32: response result of isOdd is False

Figure 4. Simplified trace for prop notBothOdd 2.

The correspondence between span nesting and the parent-

child relation is not trivial: The application of an observed

function usually has a request-response span for both its re-

sult and its argument. In Figure 4 on the left the request-

response spans for function results are marked with •-

brackets, whereas the request-response spans for function

arguments are marked with ◦-brackets. Each event has a

unique index i. The result span 〈6, 11〉 for plusOne is nested

within the result spans of all the other functions. However, it

is also nested within the argument spans 〈5, 12〉 and 〈4, 13〉
for isEven and modTwo. Within these argument spans the

computations for the two functions isEven and modTwo are

suspended; the events inside these spans are actually for the

computation of the result of isOdd and hence the computa-

tion statement for plusOne has to be a child of the compu-

tation statement of isOdd. Overall we obtain from the value

observation trace the computation tree of Figure 2.
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Our key observation is that the events of a value obser-

vation trace are organised in nested request-response spans

and whether a computation statement is the parent of another

computation statement follows from the nesting of the vari-

ous spans forming the computation statements. We make the

following contributions:

• We give a semantics that defines the value observation

trace and how it is created by Hood (Section 2).

• We explain the correspondence between the nesting of

request-response spans and the parent-child relation of

computation statements. Afterwards we give an algo-

rithm for generating a computation tree from Hood’s

value observation trace (Section 3).

• We implement our method in the new algorithmic debug-

ger Hoed-pure (Section 4.1). Our debugger is available

from the Haskell package archive Hackage:

cabal install Hoed

We describe our experience of finding defects in several

real-world Haskell programs (Section 7).

2. Creating a Value Observation Trace

Gill invented the technique for obtaining a value observation

trace from a computation and implemented it in the Haskell

library Hood [15]. Faddegon and Chitil [12] gave a first

formal definition of Gill’s technique by extending Launch-

bury’s lazy semantics [17] with observation tracing. That

definition is insufficient here, because it omits the request

events that Hood provides. Request events are unnecessary

for reconstructing computation statements from the trace but

they are essential for our new method of reconstructing from

the trace the parent-child relation for the computation tree.

Furthermore, here we cover a larger language than Fad-

degon and Chitil. We include exceptions in our language, be-

cause in practice defective programs often raise exceptions

and when constructing the computation tree later we assume

that in the trace every request is followed by a corresponding

response, which might be an exception.

2.1 Language

We define tracing for the language given in Figure 5. The ba-

sis is Launchbury’s core language together with his data con-

structors and primitive operations. Our language includes in-

teger values; they are constructors of arity zero. An excep-

tion is also just the constructor Exception. To make heap

allocation explicit, Launchbury requires the arguments of

applications, data constructors and primitive operations to be

variables. A language without this argument restriction can

easily be translated into the core by inserting let-bindings

[17]. Thus the language covers all examples in this paper.

We extend Launchbury’s language with expressions for

observing values. The programmer uses observe to anno-

tate expressions that they want to observe. The obs ex-

pressions and obsλ values should not appear in a program.

Rather they are introduced by evaluation of an observe ex-

pressions. A single applied data constructor or a single λ-

abstraction may be observed several times; the latter case

leads to values such as obsλ p1 (obsλ p2 (. . . (λx.e) . . .))
during evaluation.

Our semantics scales to the many different expressions

in Haskell, because we observe only values and Haskell has

only few different sorts of values.

2.2 Value Observation Trace

A trace is a sequence of events as defined in Figure 6. The

events are written in the order in which the program is eval-

uated. Each event has a unique event number i, which is its

index in the trace. There are two main types of events: re-

quest and corresponding response events. When evaluation

of an expression starts, a request event is recorded (the value

of the expression is requested). When evaluation of an ex-

pression ends, a response event records the value of the ex-

pression. Our semantics will ensure for a trace that every re-

quest event has a later corresponding response event, which

may be an exception.

Every event except for i : Root f has a field p, which

identifies its parent event and its particular role as child of

that parent event. Note that this parent/child terminology of

events is taken from Hood [15]. As we will see, these parents

and children express the relation between expressions and

their subexpressions; they are unrelated to the parent/child

structure of nodes of the computation tree.

An i : Root f event records the function identifier sup-

plied by the expression observe f e. The event i : Enter p
expresses the request for the value of an expression. There

are two possible response events: j :Con p c a and j :Lam p.

The former expresses that the value is a saturated applica-

tion of a constructor c of arity a, the latter expresses that

the value is a function, a λ-expression. A constructor event

j :Con p c a may be the parent of up to a children, each with

a parent Pc j m where 1 ≤ m ≤ a.

Functional values are recorded extensionally, as a finite

map from arguments to results. Hence an i : Lam p event

may have an arbitrary number of j : MapsTo p events as

children. Each j : MapsTo p event describes a pair of an

argument and a result. Note the difference in structure: an

application expression e x consists of a function e and an

argument x; the whole expression evaluates to some result.

In contrast, an j : MapsTo p event may have an argument

child with parent Pa j and a result child with parent Pr j; its

parent is the function that was applied.

Overall, most events can have children, but, because lazy

evaluation may not evaluate some function or data construc-

tor arguments, some events do not necessarily have these

children.

2.3 Semantics

Figure 7 defines the semantics of our language. A heap Γ
is a finite map from variables to expressions. The relation
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expression e ::= v
| e x application

| let {xk = ek}
n
k=1 in e recursive binding; variables xk are bound in any ek and e

| case e of {ck x1 . . . xmk
→ ek}

n

k=1 case; bound variables x1, . . . , xmk
may appear in ek

| x variable

| x1 ⊕ x2 application of a primitive operator such as + or ==

| observe f e label expression with function identifier f and observe it

| obs p e observe expression

value v ::= c x1 . . . xn saturated application of data constructor c of arity n
| vλ functional value

functional value vλ ::= λx.e λ-abstraction; variable x is bound in e
| obsλ p vλ observed functional value

Figure 5. Syntax of the core language.

trace T ::= t0, . . . , tn sequence growing right

event number i ∈ {0, . . . , n} refers to an event in the trace

trace event t ::= i :Root f root with function identifier f
| i :Enter p enter evaluating expression request

| i :Con p c a value is saturated application of data constructor c with arity a ∈ {0, 1, . . .} response

| i :Lam p value is an abstraction response

| i :MapsTo p pair of argument and result of a function application

parent p ::= P i parent is event i :Root f or i :Lam p′

| Pc i m argument m; parent is constructor event i :Con p′ c a with m ≤ a
| Pa i argument; parent is an event i :MapsTo p′

| Pr i result; parent is an event i :MapsTo p′

Figure 6. Syntax of the trace and its events.

Γ, T : λx.e ⇓ Γ, T : λx.e Lam

Γ, T : c x1 . . . xn ⇓ Γ, T : c x1 . . . xn Con

Γ, T : e ⇓ Γ′, T ′ : v

Γ[x 7→ e], T : x ⇓ Γ′[x 7→ v], T ′ : v̂
Var

Γ[xi 7→ ei]
n
i=1, T : e ⇓ Γ′, T ′ : v

Γ, T : let {xi = ei}ni=1 in e ⇓ Γ′, T ′ : v
Let

Γ, T : e ⇓ Γ′, T ′ : v notAbs v

Γ, T : e x ⇓ Γ′, T ′ : Exception
EApp

Γ, T : e ⇓ Γ′, T ′ : λx.e′ Γ′, T ′ : e′[y/x] ⇓ Γ′′, T ′′ : v

Γ, T : e y ⇓ Γ′′, T ′′ : v
App

Γ, T :e ⇓ Γ′, T ′ :ck x1 . . . xmk
Γ′, T ′ :ek[xi/yi]

mk

i=1 ⇓ Γ′′, T ′′ :v

Γ, T : case e of {ci y1 . . . ymi
→ ei}

n

i=1 ⇓ Γ′′, T ′′ :v
Case

Γ, T : e1 ⇓ Γ′, T ′ : v1 Γ′, T ′ : e2 ⇓ Γ′′, T ′′ : v2
Γ, T : e1 ⊕ e2 ⇓ Γ′′, T ′′ : v1 ⊕ v2

Prim

Γ, T : e ⇓ Γ′, T ′ : v notCon v {ci}
n
i=1

Γ, T : case e of {ci y1 . . . ymi
→ ei}

n

i=1 ⇓ Γ′, T ′ : Exception
ECase

Γ, T ⋖ (i :Root f) : obs (P i) e ⇓ Γ′, T ′ : v i= |T |

Γ, T : observe f e ⇓ Γ′, T ′ : v
Observe

Γ, T ⋖ (i :Enter p) : e ⇓ Γ′, T ′ : c x1 . . . xn i= |T | j= |T ′|

Γ, T : obs p e ⇓ Γ′[y1 7→obs (Pc j 1) x1, . . . , yn 7→obs (Pc j n) xn], T
′
⋖(j :Con p c (arity c) ) : c y1 . . . yn

ObsCon

Γ, T ⋖ (i :Enter p) : e ⇓ Γ′, T ′ : vλ i = |T | j= |T ′|

Γ, T : obs p e ⇓ Γ′, T ′
⋖(j :Lam p) : obsλ (P j) vλ

ObsLam

Γ, T :e ⇓ Γ′, T ′ :obsλ p vλ Γ′[y 7→obs (Pa j) x], T
′
⋖(j :MapsTo p) :obs (Pr j) (vλ y) ⇓ Γ′′, T ′′ :v j= |T ′|

Γ, T :e x ⇓ Γ′′, T ′′ :v
ObsApp

Figure 7. A natural semantics for lazy evaluation with generation of a trace.
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Γ, T : e ⇓ Γ′, T ′ : v states that the expression e with

heap Γ and trace T evaluates to the value v with heap Γ′

and trace T ′. A computation starts with an empty heap and

empty trace.

The seven rules at the top (Lam, Con, Var, Let, App,

Case and Prim) are almost identical to rules with the same

names in Launchbury’s semantics [17]. Like Launchbury we

require that all bound variables of an expression are distinct.

The v̂ in the Var rule indicates that all bound variables in v
are renamed to fresh ones. For y1 to yn in ObsCon and y
in ObsApp we also pick fresh variables. In the Prim rule ⊕
is the total semantic function associated with the syntactic

operator ⊕.

The rules ECase and EApp define basic exceptions. An

exception is just a constructor Exception and thus already

handled by most rules. The exception rules just ensure that if

a computation with the other rules would get “stuck”, then it

evaluates to an exception. The expression notCon v {ci}
n
i=1

in the ECase rule is true iff v is not a constructor application

such that the constructor occurs in the set {ci}
n
i=1. Similarly

notAbs v in the EApp rule is true iff v is not an abstraction.

The constructor Exception may appear in a program but

should not appear in a pattern of a case expression to catch an

exception, as this would substantially change the equational

theory of the language; however, this would still not affect

tracing itself.

The only tracing-specific extension in all the previous

rules is that they thread the trace as an additional global state

through the computation .

Finally consider the rules that actually construct the trace.

t0, . . . , tn ⋖ t = t0, . . . , tn, t appends an event to the trace.

|T | determines the length of trace T and thus the index of

the event that is appended next.

The Observe rule records an i : Root f event and wraps

the observed expression with the pseudo-function obs. The

index of the i : Root f event is passed to obs to enable

connecting to the parent event later. Before reducing e in

obs p e the ObsLam and ObsCon rules add the request event

i : Enter p to the trace. When e is reduced to a value, this

value is also recorded in the trace with the same parent p.

Thus the trace records the request-response spans that we

discussed in the Introduction.

For an application of a constructor c x1 . . . xn the Obs-

Con rule adds a Con event and continues observing the

arguments x1, . . . , xn of the constructor using the pseudo

function obs.

For a functional value vλ the ObsLam rule adds an event

i :Lam p to the trace. For every application of the resulting

observed functional value obsλ (P j) vλ the ObsApp rule

adds an event k : MapsTo (P j) to the trace and continues

observing the argument and result using the pseudo function

obs.

So only when evaluation reaches a constructor applica-

tion that is recorded in the trace. When that constructor

0: Root “isOdd”

1: Enter (P 0)

2: Lam (P 0)

3: MapsTo (P 2)

• 4: Enter (Pr 3) 1: request result of isOdd

5: Root “isEven”

6: Enter (P 5)

7: Lam (P 5)

8: MapsTo (P 7)

• 9: Enter (Pr 8) 2: request result of isEven

10: Root “modTwo”

11: Enter (P 10)

12: Lam (P 10)

13: MapsTo (P 12)

• 14: Enter (Pr 13) 3: request result of modTwo

◦ 15: Enter (Pa 13) 4: request arg. of modTwo

◦ 16: Enter (Pa 8) 5: request arg. of isEven

17: Root “plusOne”

18: Enter (P 17)

19: Lam (P 17)

20: MapsTo (P 19)

• 21: Enter (Pr 20) 6: request result of plusOne

◦ 22: Enter (Pa 20) 7: request arg. of plusOne

◦23: Enter (Pa 3) 8: request arg. of isOdd

◦24: Con (Pa 3) 2 0 9: arg. of isOdd is 2

◦ 25: Con (Pa 20) 2 0 10: arg. of plusOne is 2

• 26: Con (Pr 20) 3 0 11: result of plusOne is 3

◦ 27: Con (Pa 8) 3 0 12: arg. of isEven is 3

◦ 28: Con (Pa 13) 3 0 13: arg. of modTwo is 3

• 29: Con (Pr 13) 1 0 14: result of modTwo is 1

• 30: Con (Pr 8) False0 15: result of isEven is False

• 31: Con (Pr 3) False0 16: result of isOdd is False

32: MapsTo (P 2)

• 33: Enter (Pr 32) 17: request result of isOdd

34: MapsTo (P 7)
...

...
...

...
...

• 51: Con (Pr 32) False 0 32: result of isOdd is False

Figure 8. Full trace with corresponding simplified events.

application is destructed by a case expression, nothing is

recorded in the trace. In contrast, when evaluation reaches a

functional value that is recorded in the trace and whenever

that functional value is applied to an argument, the pair of

argument and result are recorded in the trace. We have this

asymmetry, because our syntax uses a saturated constructor

application as value, which contains a constructor and its ar-

guments; in contrast, a functional value can be applied to an

arbitrary number of arguments in a computation.

2.4 A Trace

If our introductory example is annotated as in Figure 3,

then the semantics gives us the trace shown in Figure 8. On
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the right side the simplified trace of Figure 4 is given for

comparison.

There is a one-to-one correspondence between func-

tion calls (of observed functions) during the computation

and MapsTo events in the trace. MapsTo events that have

the same parent record applications of the same func-

tion. For example, the two events 3 : MapsTo (P 2) and

32 : MapsTo (P 2) have the same parent. They are both

recordings of calling the function isOdd.

In the remainder of the paper we assume the existence of

a trace T of a computation.

2.5 Request-Response Spans

Only the ObsLam rule and the ObsCon rule add request and

response events to the trace. Each rule introduces a pair of a

request and a response event. For the trace threaded through

the whole computation each of these rules adds a request

event to the trace coming in and adds a response event just

before passing the trace out. Hence these events always ap-

pear as pairs in a trace and they appear in sequence or nested,

like parentheses in the language of balanced parentheses. In

the following we call such a pair a request-response span

and write it as 〈i, j〉 where i and j are the numbers of the

request and, respectively, response event.

Because request-response spans are like balanced paran-

theses, we can easily determine for each request event its

corresponding response event through a sequential traversal

of the trace from beginning to end.

The ObsLam and ObsCon rule also guarantee the follow-

ing invariant: the request and the response event of a request-

response span have the same parent. Because a sequential

traversal of the trace easily determines for each requeust

event its corresponding response event, it is not actually nec-

essary for response events to have parents at all. However,

we include parents in response events, because Hood does

so, it simplifies some algorithms, and it allows additional

sanity checks in our implementation.

Request-response spans are the key to constructing a

computation tree from a trace. In Figure 8 nearly all request-

response spans are marked on the left side with vertical lines

terminated by • or ◦. Trivial spans that directly follow a Root

event, such as 〈1, 2〉 and 〈6, 7〉, are not marked, because we

do not need trivial spans for constructing a computation tree.

3. From Trace to Computation Tree

We now have a precise definition of the value observation

trace and have to obtain from it a computation tree. In the fol-

lowing we assume that we observe only top-level variables

bound to λ-abstractions, such as isOdd, which is bound to

λn. isEven (plusOne n) in Figure 1. We discuss the rea-

sons for this restriction in Section 5.1.

We first discuss how we construct the nodes of the com-

putation tree. Afterwards we discuss how we construct the

0:Root “isOdd”

2: Lam

3: MapsTo

24: 2 31: False

32: MapsTo

44: 3 51: False

a r a r

5:Root “isEven”

7: Lam

8: MapsTo

28: 3 30: False

34: MapsTo

47: 4 50: False

a r a r

10:Root “modTwo”

12: Lam

13: MapsTo

28: 3 29: 1

36: MapsTo

48: 4 49: 2

a r a r

17:Root “plusOne”

19: Lam

20: MapsTo

25: 2 26: 3

40: MapsTo

45: 3 46: 4

a r a r

Figure 9. Trace of Figure 8 shown as forest of event trees.

edges, that is, the parent-child relation of the computation

tree.

3.1 Event Trees

We construct the nodes of the computation tree in two steps:

First we translate the event trace into a forest of event trees.

Subsequently we translate the forest into nodes of the com-

putation tree. Note that an event tree and a computation tree

are two very different structures.

The nodes of an event tree are events. Enter events are

not needed for constructing the nodes of a computation tree.

Every event of the event trace that is not an Enter event

becomes a node in an event tree. The edges of an event tree

are determined by the parent fields of the events: An event

with parent P i, Pc i a, Pa i or Pr i has the event with number

i as parent. Therefore every Root event of the event trace

becomes the root of an event tree.

Figure 9 shows the four event trees that we obtain from

the trace of Figure 8. Because parent fields determine the

tree edges, we do not include them in the tree nodes. The

argument event of a MapsTo event is marked with a and

the result event is marked with r. Constructor events are

abbreviated to show only the constructor name.
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In our example each observed function is applied exactly

twice in the traced computation. Therefore each Lam node

has exactly two MapsTo nodes as children.

From the semantic rules of Figure 7 we obtain the follow-

ing properties of an event tree:

• An i :Root f node has exactly one child (Observe). Be-

cause we observe only variables bound to λ-abstractions,

that child is a Lam node.

• An i :Lam p node has MapsTo nodes as children. There

are zero or more such children. All children have the

same parent P i (ObsLam).

• An i : MapsTo p node has at most one child with parent

Pa i and one child with parent Pr i (ObsApp).

• An i : Con p c a node has at most one child with parent

Pc i k for every k ∈ {1, . . . , a} (ObsCon). Recall that a
is the arity of the constructor c.

Because of lazy evaluation, some expressions are never eval-

uated and hence certain children may not exist in the trace.

Because we observe only top-level variables, which are

evaluated at most once, each observation yields at most one

event tree. Removing an observation from the program leads

to removing its corresponding event tree from the forest of

event trees. The remaining events of the trace would have

different indices but appear in unchanged order.

3.2 Constructing the Nodes of the Computation Tree

The nodes of the computation tree are computation state-

ments. Figure 10 defines the syntax of computation state-

ments. A computation statement is a function identifier plus

a singleton map. A singleton map maps an argument value

to a result value. A value can be unknown when lazy evalu-

ation did not require its evaluation, the saturated application

of a constructor to values, or a functional value. A functional

value is represented extensionally as a finite map from argu-

ments to results. Hence we define it as a finite set of singleton

maps.

The algorithm of Figure 11 constructs computation state-

ments from an event tree. We write etp for a subtree of an

event tree that has a root node with parent p. As the last

equation emphasises, because of lazy evaluation such a sub-

tree can be empty.

For every MapsTo event that is a grandchild of a Root

event we construct a computation statement. So there is a

one-to-one relation between the nodes in the computation

tree and the MapsTo events whose grandfather is a Root. So

from the eight MapsTo events of Figure 9 we obtain the eight

computation statements

isOdd= 2 7→ False isOdd= 3 7→ False

isEven= 3 7→ False isEven= 4 7→ False

modTwo= 3 7→ 1 modTwo= 4 7→ 2

plusOne= 2 7→ 3 plusOne= 3 7→ 4

statement s ::= f = a
singleton map b ::=w 7→ w
statement value w ::= unknown

| c w1 . . . wn n = arity c
| {b1, . . . , bk} functional value

Figure 10. Abstract syntax of computation statements.

mkStmts













i :Root f

j : Lam

et(P j) . . . et(P j)













=

{f =mkSMap et(P j), . . . , f =mkSMap et(P j)}

mkSMap







i : MapsTo

et(Pa i) et(Pr i)

a r






=

mkVal et(Pa i) 7→ mkVal et(Pr i)

mkVal







i : Con c a

et(Pc i 1) . . . et(Pc i a)

1 a






=

c (mkVal et(Pc i 1), . . . ,mkVal et(Pc i a)

mkVal





i : Lam

et(P i) . . . et(P i)



 =

{mkSMap et(P i), . . . ,mkSMap et(P i)}

mkVal (empty event tree) =

Figure 11. From event tree to computation statements.

In practice a debugger may introduce some syntactic

sugar for nodes of a computation tree. For example, a func-

tion argument can be moved to the left side of the equals

sign. Also repeated singleton maps in a functional value can

be omitted.

3.3 Argument and Result Spans

Request-response spans are the key to constructing the edges

of the computation tree, that is, determining the parent-

child relation between computation statements. In the se-

quential value observation trace every request event, that is,
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an i : Enter p event, is sooner or later followed by a corre-

sponding response event, that is an i :Con p c a or i :Lam p
event. To determine request-response events and their nest-

ing structure we again focus on the sequential structure of

the value observation trace. The forst of event trees that gave

us the computation statements is now of less importance.

In this paper we ignore the trivial 〈i, (i + 1)〉 spans with

i :Enter p and i + 1 :Lam p that follow each (i − 1) :Root

event.

The forest of event trees tells us for every response event

to which computation statement it belongs. Similarly we

say for its corresponding request event and even the whole

request-response span that they belong to the same compu-

tation statement. So every computation statement has one or

more request-response spans.

Because every computation statement is of the form

f = wa 7→ wr and any request event belonging to it ei-

ther belongs to the argument value wa or the result value

wr, we can divide the spans of a computation statement into

argument spans and result spans. A value can have more

than one span; for example the value (3,4) has three spans:

for the constuctor (,) and for each of the integers 4 and 4.

Because of lazy evaluation the argument of a function may

never be evaluated; hence we conclude that a computation

statement can have one or more result spans and zero or

more argument spans.

So how do these argument and result spans determine the

parent-child relation between computation statements? As

outlined in the introduction, a computation statement is a

child, if it contributes to the computation of its parent. Here

“contribution” is defined by the fault-localisation property

of algorithmic debugging: If a parent computation statement

f = wa 7→ wr is wrong but all its child computation

statements are correct, then the definition of function f must

be defective.

A result span of a computation statement encloses events

that record computation activity of that very computation

statement. So when a result span of a computation statement

s1 is directly nested in the result span of a computation

statement s2, then s1 is a child of s2.

3.4 Positive and Negative Spans

Because Haskell is lazily evaluated, function arguments are

not evaluated before a function call but only when needed

during the evaluation of the called function. Hence, an argu-

ment span encloses events that record computation activity

that did not contribute to the computation statement of the

span. Instead, that computation activity has to be attributed

to the function that passed the argument in its definition. In

the following we call a span of a computation statement pos-

itive, if the events nested in the span contribute to the com-

putation statement and negative, if they do not.

Because our language is higher-order, not every argument

span is negative and not every result span positive.

let { i = observe "i" (λz.z),
f = observe "f"

(λg.let {x = 42, y = i x} in g y),

h = λu.u
} in f h

Figure 12. A higher-order program.

⋆

f = {42 7→ 42} 7→ 42

i = 42 7→ 42

Figure 13. Computation tree for the higher-order program.

0:Root “f”

2: Lam

3: MapsTo

6: Lam

7: MapsTo

18: 42 19: 42

20: 42

a

a r

r

10:Root “i”

12: Lam

13: MapsTo

16: 42 17: 42

a r

Figure 14. Event trees of the higher-order program.

Consider the higher-order program in Figure 12. Because

function f uses and calls function i, we expect the com-

putation tree to look as shown in Figure 13. Function h is

passed as argument to function f, but inside the body of f

function h is applied to an argument and the subcomputa-

tion for this argument has to be a child computation state-

ment for the computation statement of f. Figure 14 shows

the event trees of the value observation trace. All spans of

the computation statement i = 42 7→ 42 are nested in the

span 〈9, 18〉 of the argument of the argument of f. So for

the computation statement i = 42 7→ 42 to be considered

a child of the computation statement f = {42 7→ 42} 7→
42, this span 〈9, 18〉 has to be positive. Seeing that 〈9, 18〉 is

the span of an argument of an argument, the method for de-

termining whether any span is positive or negative becomes

clear: Follow the path of event parents from the span up-

wards to the MapsTo event of the computation statement.

If the path has an odd number of Pa i parents, then the span

contributes negatively. If the path has an even number of Pa i
parents, then the span contributes positively. A MapsTo is

the one and only contravariant event: It flips the contribution

of any span concerning its argument from positive to nega-

tive and vice versa.

Function isPos defines for the number i of a request or

response event whether its span contributes positively:
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mkCompTree [] n tree = tree

mkCompTree (e:trc) n tree

| isStartOfPosSpan e =

if isChildOf m n tree

then mkCompTree trc m tree

else mkCompTree trc m (mkChild m n tree)

| isEndOfPosSpan e || isStartOfNegSpan e =

mkCompTree trc (parentOf n tree) tree

| isEndOfNegativeSpan e =

mkCompTree trc m tree

| otherwise =

mkCompTree trc n tree

where m = statementOf e

Figure 15. Algorithm for constructing the computation tree.

isPos i =











True , if ti = i :Root f

not (isPos k) , if pi = Pa k

isPos k , if pi = Pr k or P k or Pc k m

where pi is the parent field of event ti

3.5 Constructing the Edges of the Computation Tree

From the event trees we constructed the computation state-

ments, the nodes of the computation tree. To determine

which node is child of which other node, we sequentially

traverse the value observation trace, considering the request-

response spans.

Figure 15 shows the final algorithm for constructing a

computation tree. The function mkCompTree takes a value

observation trace (a list of events), a current node and a cur-

rent tree to produce the final computation tree. We initially

call mkCompTree with the whole value observation trace, the

root node ⋆, and a tree without edges that has just the root

node and all previously constructed computation statements

as nodes.

Throughout the algorithm, the current node n keeps track

of the composition of nested positive and negative spans.

The current node indicates to which computation the next

events contribute. The algorithm traverses the sequence of

events from the beginning to the end, performing special

operations at the start and end of most spans. In particular,

at the start of a positive span the algorithm checks whether

the computation statement m of that span is already a child

of the current computation statement n within the current

tree. If it is not yet, then an edge is added to the tree to

make it a child. The algorithm continues with m as current

computation statement.

In every step of the algorithm the current node n has a

parent all the way up to ⋆. At the end of traversing the trace

we have the computation tree. In the resulting tree every

statement has exactly one parent: either the root node ⋆ or

another statement.

and = observe "and" and’

and’ b True = b

-- Missing "and’ b False" -> Exception!

foldl = observe "foldl" foldl’

foldl’ f z [] = z

foldl’ f z (h:t) = let z’ = f z h in foldl f z’ t

Figure 16. Example program with observations.

0: Root “foldl”

1: Enter (P 0)

2: Lam (P 0)

3: MapsTo (P 2)

• 4: Enter (Pr 3)

• 5: Lam (Pr 3)

6: MapsTo (P 5)

• 7: Enter (Pr 6)

• 8: Lam (Pr 6)

9: MapsTo (P 8)

• 10: Enter (Pr 9)

◦ 11: Enter (Pa 9)

◦ 12: Con (Pa 9) (:) 2

13: MapsTo (P 2)

• 14: Enter (Pr 13)

• 15: Lam (Pr 13)

16: MapsTo (P 15)

• 17: Enter (Pr 16)

• 18: Lam (Pr 16)

19: MapsTo (P 18)

• 20: Enter (Pr 19)

◦ 21: Enter (Pa 19)

◦22: Enter (Pc 12 2)

◦23: Con (Pc 12 2) [ ] 0

◦ 24: Con (Pa 19) [ ] 0

◦ 25: Enter (Pa 16)

◦ 26: Enter (Pa 3)

27: Root “and”

28: Enter (P 27)

29: Lam (P 27)

◦ 30: Lam (Pa 3)

31: MapsTo (P 30)

◦ 32: Enter (Pr 31)

33: MapsTo (P 29)

• 34: Enter (Pr 33)

• 35: Lam (Pr 33)

◦ 36: Lam (Pr 31)

37: MapsTo (P 36)

◦ 38: Enter (Pr 37)

39: MapsTo (P 35)

• 40: Enter (Pr 39)

◦ 41: Enter (Pa 39)

• 42: Enter (Pa 37)

◦43: Enter (Pc 12 1)

◦44: Con (Pc 12 1) False 0

• 45: Con (Pa 37) False 0

◦ 46: Con (Pa 39) False 0

• 47: Con (Pr 39) Exception 0

◦ 48: Con (Pr 37) Exception 0

◦ 49: Con (Pa 16) Exception 0

• 50: Con (Pr 19) Exception 0

• 51: Con (Pr 9) Exception 0

Figure 17. Trace of computation with higher order function.

⋆

foldl = { 7→ {False 7→ Exception}} 7→
{ 7→ {[False] 7→ Exception}}

foldl = 7→ {Exception 7→ {[] 7→ Exception}}

and = 7→ {False 7→ Exception}

Figure 18. Computation tree for trace of Figure 17.

3.6 Example Construction of a Computation Tree

The program in Figure 16 defines recursively a higher-

order function foldl over lists and contains an incomplete

definition of the function and. Evaluating the expression

foldl and True [False] results in an exception. The trace

of the computation is given in Figure 17. We use • to mark
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a positive span and ◦ to mark a negative span. These are not

always the same as result, respectively argument spans.

The computation tree has three computation statements,

corresponding to the three highlighted MapsTo events in the

trace, two for the function foldl and one for the function

and. The construction of the computation tree starts with

the root ⋆. The traversal of the event sequence first reaches

the span 〈4, 5〉. Consequently the node for foldl that corre-

sponds to the event 3 :MapsTo becomes a child of the cur-

rent node ⋆. Later the spans 〈7, 8〉 and 〈10, 51〉 just confirm

this parent-child edge. When reaching the span 〈14, 15〉 the

current node is the computation statement that corresponds

to the event 3 : MapsTo and hence the computation state-

ment for the event 13 : MapsTo becomes its child. Sev-

eral subsequent spans change the current node but only at

span 〈34, 45〉 the computation for and that corresponds to

the event 33 : MapsTo is added as new child to ⋆, which

is the current node at the time. Again later spans change

the current node, but do not change the tree any more. Fig-

ure 18 shows the final tree. The computation statement for

and, which given a second argument False raises an excep-

tion, indicates a defect.

4. Our Algorithmic Debugger Hoed-pure

An algorithmic debugger [19, 26] uses a computation tree

to find a defect in a program. An oracle judges computation

statements of a computation tree, that is, the oracle decides

whether a computations statement is right or wrong. Usually

the programmer is the oracle.

To see how algorithmic debugging works, let us consider

the computation tree of Figure 2. An interaction with the al-

gorithmic debugger might look as follows, with the answers

of the oracle/programmer written in italics:

isOdd 2 = False? right

isOdd 3 = False? wrong

plusOne 3 = 4? right

isEven 4 = False? wrong

modTwo 4 = 2? wrong

Defect is in the definition of "modTwo"!

If a parent computation statement is wrong but all its chil-

dren are right, then the definition of the function appearing

in the parent is defective. Not all of the computation state-

ments need to be judged. The default strategy starts asking

questions at the root of the tree and the number of questions

asked is proportional to the length of the path from the root

to the defective node and the branch factor, the average num-

ber of children per node [27].

4.1 Implementation

We implemented our method for Haskell in the tracer and

algorithmic debugger Hoed-pure. For simplicity Hoed-pure

includes a reimplementation of Hood. Hoed-pure is also just

a library. After execution of the main program has termi-

nated, Hoed-pure constructs the computation tree from the

trace and then serves an interactive webpage to any browser.

The webpage provides both free exploration of the computa-

tion tree and guided algorithmic debugging. Hoed-pure has

the same run-time overhead as Hood. It defines a type class

Observable. A class instance implements tracing for a type.

The type of any argument and the result of an observed func-

tion has to be an instance of Observable. Instances are de-

rived with type-generic programming techniques [11].

The manipulation of the trace in our natural semantics is

implemented like in Hood by using side-effects that write the

trace. An optimising compiler might transform the program

such that the order of trace events is changed. Gill [15]

already argues that a compiler is unlikely to change the

order of the side-effects and we have not observed any such

problem in practice.

Our semantics describes how to handle exceptions in

principle, but in Haskell exceptions are not simple construc-

tors. Hence our implementation follow Hood in that every

instance of class Observable catches any exception. If an

exception occurs, then a response event for it is recorded in

the trace and afterwards the same exception is re-raised.

4.2 Non-terminating Programs

Some defective programs do not terminate. To obtain a trace,

the programmer lets the program run for a while and inter-

rupts it. The interrupt will be recorded as an exception in the

trace and Hoed-pure will produce a computation tree. How-

ever, such an asynchronous exception is not modelled in the

semantics presented in this paper. The computation tree can

still help the programmer understand why a program is mis-

behaving but algorithmic debugging is not guaranteed to find

the defect.

5. Soundness of Algorithmic Debugging

Our method and our implementation Hoed-pure construct a

value observation trace and from that a tree for any program

with observe annotations. However, these annotations need

to meet some conditions for the tree to be a computation tree

suitable for algorithmic debugging.

5.1 Restrictions on Observation Annotations

Figure 19 shows the form of an annotated program that guar-

antees the generation of a computation tree suitable for algo-

rithmic debugging. Our example program of Figure 3 is of

this form (modulo syntactic sugar). Currently the program-

mer has to annotate the functions of interest. In the future

a simple tool or compiler pass could annotate all top-level

functions of a module.

Firstly, only a complete let-bound expression is anno-

tated with the observe function and the label given as first

argument to observe has to be the name of the let-bound

variable. This ensures that a computation statement corre-

sponds to the original, unannotated program.

Secondly, only expressions bound by the top-level let

are annotated. All local bindings, that is, of lets nested
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let { f = observe "f" (λx.ef),
g = observe "g" (λx.eg),
...

h = eh,
x = ex,
...

} in e

}

unobserved functions and

data structures

Figure 19. General annotated program.

within the top-level let, are excluded, because the bound

expressions might contain free variables. Values of free vari-

ables are currently not included in a computation statement

and hence such a computation statement is an incomplete de-

scription of a subcomputation. The question whether such a

computation statement is right or wrong cannot be answered

without knowing the values of free variables. For example,

consider evaluating myMain for the program

f x = let g = observe "g" g’

g’ y = x+y

in g 42

myMain = (f 3) + (f 5)

The observed two computation statements g 42 = 45 and

g 42 = 47 even break equational reasoning.

The restriction to top-level definitions limits the precision

of our algorithmic debugger. If a local function is defective,

only the surrounding top-level function will be identified as

defective. In our example we can only observe function f

and any possible defect in the definition of g can only be

identified as a defect in the definition of f. In the future we

intend to lift this restriction by also recording the values of

free variables in the value observation trace and adding the

information to computation statements in the computation

tree.

Finally, the sharing of computations because of lazy eval-

uation can prevent construction of a computation tree. Con-

sider the example

ones = observe "ones" (1 : ones)

f = observe "f" (\x -> (head ones) + x)

myMain = (f 2) + (f 4)

Section 3 describes only how to construct computation state-

ments for function applications. However, the method can

easily be extended to also construct a computation statement

such as ones = 1 : . The problem is in determining the

parent-child relationships.

The spans of ones = 1 : are nested in the spans of the

result of f 2. When f 3 is evaluated, no events for ones =

1 : are recorded any more. Hence in the computation tree

the node f 2 = 3 has the child ones = 1 : but the node

f 4 = 5 has no child. On the other hand, for the program

onesA = observe "onesA" (\x -> (1 : onesA x))

f = observe "f" (\x -> (head (onesA x)) + x)

myMain = (f 2) + (f 4)

each application of onesA adds new spans and hence each

node f 2 = 3 and f 4 = 5 has a separate child node

onesA = 1 : .

A constant is a variable that is let-bound to an expres-

sion. The value of a constant may be required for several,

otherwise independent subcomputations of a program. The

constant is evaluated only once and then its value is stored

in the heap to be provided for all other subcomputations.

Besides the problem of not recording shared computa-

tions in the value observation trace, it is unclear what the

computation tree for some computations involving constants

should look like. In particular, a constant can be used to

define a cyclic data structure, which naturally would give

rise to a cyclic computation tree, a contradiction in terms. In

the past, several alternative proposals for including constants

have been made [20] and in the future we will see which of

these we can combine with our lightweight tracing approach

of constructing the computation tree.

So currently we have to be careful with constants in a pro-

gram. Most constants in Haskell programs do not cause any

problem, because either they do not use any other observed

expressions, for example overloaded variables such as (+),

or they are evaluated only once, such as main, which is the

initial expression for evaluating a Haskell program.

Finally, only λ-abstractions are annotated, because data

structures in normal form are of little interest.

In summary, we only observe top level λ-abstractions and

no observed expression may directly or indirectly use a con-

stant that directly or indirectly uses an observed expression.

Our examples obey these restrictions and so do our case

studies in Section 7.

5.2 Testing Soundness

To verify the complete implementation of tracing, tree con-

struction and algorithmic debugging we used the fully auto-

mated test method that we developed earlier [12]. That is, we

randomly generated 100,000 valid programs with observed

functions and injected a defect in some of the observed func-

tions. We checked that our computation trees have the prop-

erty that if a node is wrong but all its children are right, then

the definition of the function appearing in the parent node ac-

tually contains a defect [18, 26]. For each program we con-

struct a computation tree and use the algorithmic debugging

method to produce a set of names of defective functions that

we compare with the set of functions in which we injected a

defect:

noFreeVars e ⇒ (algoDebug t ⊆ defects e)

where t = mkCompTree T
{}, 〈〉 : e ⇓ Γ, T : v

Algorithmic debugging does not guarantee to find all defects

and some program parts may not even be evaluated, but the

set of names found with algorithmic debugging should be a

subset of the set of functions in which we injected a defect.
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In our earlier work we replace values by judgements [12].

This method does not directly transfer to a language with

data constructors and case expressions. Instead, we annotate

every data value, that is, saturated application of a data

constructor, with a Boolean flag stating whether it is right.

We introduce a pseudo-function infect, which traverses

its argument and makes all of its parts wrong. So for test-

ing, any occurrence of infect is a defect in the program.

Infection of a data structure infects all components of that

data structure. Infection of a function yields a function that

always returns an infected value. Infection never turns a con-

structor application into a λ-abstraction or vice versa, be-

cause we assume the presence of a type system that prevents

such a defect. Evaluating a case expression continues with

an infected value, if the inspected data constructor is wrong.

Hence a data structure may contain infected components, but

as long as a computation does not demand any of these in-

fected components, the computation is not infected.

6. Related Work

Our work builds on Andy Gill’s value observation technique

[15]. We reimplement his library Hood and use its value

observation trace. In Section 2 of this paper we provide a

formal definition for this trace.

6.1 Computation Trees for Functional Languages

The first computation tree structure that was proposed for

lazy functional languages is the evaluation dependence tree

(EDT) [22]. Most algorithmic debuggers for lazy languages

[1, 3, 20, 21, 30] construct EDTs. The EDT represents func-

tional values as function identifiers or partial applications.

Because a λ-abstraction plus the binding of its free vari-

ables is often big, inclusion of λ-abstractions in the EDT is

problematic. The algorithmic debugger Buddha is the first

to implement the idea of representing functional values ex-

tensionally, that is, as finite maps from arguments to results,

instead of intensionally [24, 25].

An extensional representation also requires a different

tree structure, the function dependence tree (FDT). In an

FDT a computation statement f = . . . is the parent of a

computation statement g = . . . if and only if the function

identifier g appears in the definition of the function f . In an

EDT that parent-child relation holds, if and only if the ap-

plication of function g appears in the definition of function

f . So for first-order functions the two tree structures coin-

cide. Chitil et al. [5] formally define the corresponding FDT,

compare the two tree structures and prove that both have the

essential property for algorithmic debugging.

Hoed-pure uses the extensional representation of func-

tional values. It produces an FDT structure. However, the

proofs of Chitil, Davie and Yong [5, 6] do not directly trans-

fer, because they use a slightly different programming lan-

guage with a semantics defined by graph rewriting, not a

natural semantics.

⋆

isOdd 2 = False

plusOne 2 = 3

isEven 3 = False

modTwo 3 = 1

isOdd 3 = False

plusOne 3 = 4

isEven 4 = False

modTwo 4 = 2

Figure 20. Hoed-cc’s computation tree (graph).

6.2 Computation Tree Tracing for Haskell

Freja [20–22] is the first algorithmic debugger for a sub-

stantial subset of Haskell. Freja is a complete compiler and

uses an instrumented runtime system to construct the com-

putation tree. The system handles CAFs and provides many

features for making algorithmic debugging easy to use. The

compiler front-end ensures that all information about the

source code that is required for algorithmic debugging is

passed to the back-end. Adding a language feature would re-

quire extending many of the compiler passes and the runtime

system.

Hat [8, 28, 30] is a set of tools for tracing Haskell 98

programs. The tracing tool transforms a Haskell program

into another Haskell program that, when executed, writes a

detailed trace into a file in addition to performing the same

computation as the original program. The trace includes a

computation tree plus additional information. Hat provides

many viewing tools for exploring a trace, one of which is an

algorithmic debugger. Chitil et al. compare an old version

of Hat with Freja and Hood [7]. Like Freja, Hat supports

trusting a module. Computations of a trusted module are

not traced and hence do not appear in the computation tree.

However, trusted modules still have to be transformed by

the tracing tool and hence can use only supported language

features. Adding a language feature to Hat would require

extending the source-to-source transformation tool.

Buddha [24, 25] is another algorithmic debugger for

Haskell. Like Hat, Buddha is also based on program transfor-

mation. The trace is a computation tree. The transformation

is different from Hat and the resulting program uses a prim-

itive for observing an expression of any type without forc-

ing its evaluation. That primitive was implemented in the

Glasgow Haskell compiler. Buddha is the first algorithmic

debugger that can provide an extensional representation of

functional values. Adding a language feature would require

extending the source-to-source transformation and possibly

the primitive.

Hoed-cc [12] is the first algorithmic debugger that works

for real-world Haskell programs. Continuous evolution of

the Haskell language and the complex implementation of

Freja, Hat and Buddha means that these debuggers only

support subsets of the language features used in real-world
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isEven x = if x == 1 then True else isOdd (x-1)

isOdd x = if x == 1 then True else isEven (x-1)

Figure 21. Program with mutual recursion.

⋆

{isEven 1 = True,

isEven 3 = True,

isOdd 2 = True,

isOdd 4 = True}

⋆

isOdd 4 = True

isEven 3 = True

isOdd 2 = True

isEven 1 = True

Figure 22. Computation trees of Hoed-cc and Hoed-pure

Haskell programs. In contrast Hoed-cc is a library that com-

bines the Haskell object observation debugger (Hood) [15]

with the cost centre stack provided by the profiling option

of the Glasgow Haskell compiler. Implementing Hoed-cc’s

tracing method for other Haskell implementations or other

languages would require extending the compiler and run-

time system with cost centre stack support. For example, the

interpreter GHCi does not support cost-centre stacks.

Because cost centre stacks only contain function names,

not arguments of specific calls, and are also compressed,

Hoed-cc generates many surplus child-parent dependencies.

Figure 20 shows Hoed-cc’s computation tree for our exam-

ple (actually an acyclic directed graph). Compare it with Fig-

ure 2. Surplus dependencies in a Hoed-cc computation tree

increase the number of statements an algorithmic debugger

asks the oracle to judge. Algorithmic debugging with the

computation trees from the Introduction may require up to

5 questions with Hoed-pure and 8 questions with Hoed-cc.

A node in a Hoed-cc computation tree may contain a

set of computation statements. Consider evaluating isOdd

4 for the program in Figure 21. Figure 22 shows Hoed-cc’s

computation tree on the left and Hoed-pure’s on the right.

An algorithmic debugger that uses Hoed-cc’s tree tells us

that the defect is in one of the functions isEven and isOdd.

In contrast, with Hoed-pure’s tree the debugger can tell us

that the defect is in isEven when applied to 1.

A Hoed-cc annotation requires the introduction of a

lambda expression and certain compiler optimisations must

be disabled to keep the lambda expression in place. To ob-

serve for example isOdd with Hoed-cc the following anno-

tation is used:

isOdd = observe "isOdd"

(\ n -> {-# SCC "isOdd" #-} (isOdd’ n))

Our earlier semantics [12] formalises the observation of

functional values in a different but equivalent way. In that

definition obsλ does not form a value but an expression. The

definition is closer to the implementation of Hood, whereas

the definition given here expresses the similarities and dif-

ferences between observing constructor applications and λ-

abstractions more clearly.

6.3 Computation Tree Tracing for Other Languages

Shapiro constructed computation trees for the logic language

Prolog [26]. Algorithmic debugging has since been applied

to many other languages; we give a few notable examples.

Fritzon et al. generalized computation tree tracing to lan-

guages with side effects [13]. An algorithmic debugger with

a framework to record side-effects in the computation tree is

for example available for Java [2, 16]. Tail call optimization

is forbidden and higher order functions are not supported.

Algorithmic debugging is also applied to strict functional

languages such as Erlang [4]. The implementation is com-

plex and uses a specific run-time system to transform all

code, including libraries, during evaluation of the program.

7. Case Studies

We compare Hoed-pure with Hoed-cc in three case studies.

7.1 A Video Game

The game Raincat [14] consists of approximately 2500 lines

of Haskell code and uses libraries such as OpenGL that are

not written in Haskell. Hoed-cc was the first algorithmic

debugger that could handle Raincat [12]. Hoed-pure can also

be used to debug Raincat. Because Raincat is an interactive

game, its trace is different for every run. Hence we cannot

compare debugging sessions in detail.

7.2 A Defective Window Manager

XMonad [10] is an X11 window manager written in roughly

1300 lines of Haskell. We introduced a defect in XMonad

which incorrectly duplicates the workspace brought into fo-

cus. XMonad’s property-based tests detect, without user in-

teraction, that something is wrong. We annotated the 9 func-

tions in the code related to the failing property.

For the counter-example found by XMonad’s tests Hoed-

pure generated a computation tree with 12 nodes (the artifi-

cial root node and a node for each computation statement),

11 edges and a branch factor, the average number of children

of non-leaf nodes, of 2.2. We found the defect after judging

3 statements.

Hoed-cc also generated 11 computation statements but

organised in a tree with 7 nodes (an artificial root node, four

nodes with one statement, a statement with 3 applications

of view and a node with two applications of member, an

application of insertUp and an application of shiftWin),

7 edges and branch factor 2.33. We found the defect after

judging 9 statements. Because the defect was not in one of

the nodes with multiple statements the precision with Hoed-

cc is in this case the same as with Hoed-pure.
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7.3 A Defective Pretty-Printer

Within the implementation of Hoed-pure we used version

1.0 of the library FPretty [23] to pretty-print computation

statements over several lines with appropriate indentation.

We noticed that the library sometimes indents more than

we expected and the first author, who was unfamiliar with

FPretty, investigated with Hoed-pure.

FPretty is a small library with just 12 functions. Be-

cause most of them are higher-order functions that take other

higher-order functions as arguments, it was non-trivial to un-

derstand what each function should do. We annotated all 12

top-level functions in the library. Then we pretty-printed an

example, during which 15327 events were collected. These

events translated to 65 computation statements which were

organised in a computation tree with 65 edges and branch

factor 1.8. We found the defect after judging 11 statements.

After we found the defect, we proposed a fix which is in-

cluded in FPretty 1.1.

With Hoed-cc the 65 computation statements are organ-

ised in a tree with 7 nodes, 9 edges and branch factor 3.0.

After judging 65 statements the defect was found in a node

with computation statements of the defective function and

three other functions.

8. Conclusion

A computation tree is a key means for understanding how a

program works, or why it does not work. A computation tree

can be explored freely, or an algorithmic debugger can be

used to systematically traverse a computation tree and find

the location of a defect.

We have presented a new lightweight method for generat-

ing a computation tree. The starting point is our formal def-

inition of the trace generated by the original Hood library.

The definition enables us to see the existence of request-

response spans in traces and realise how their nesting de-

termines the structure of a computation tree. The order of

events in the trace reflects the evaluation order, but the com-

putation tree has a structure independent of evaluation or-

der and reflects the program structure instead. Our tracing

semantics is specific to lazy evaluation, but our idea of ob-

serving values by simple instrumentation by a library and

transforming the resulting trace into a computation tree is

independent of evaluation order and applicable to many pro-

gramming languages. Negative request-response spans are

not only required for lazy evaluation but also call-by-value

languages can benefit from the method for relating function

calls in the presence of higher-order functions.

We implemented our method in the library Hoed-pure.

Hoed-pure supports Haskell language extensions and any

Haskell compiler. The user only has to import the library

and annotate functions of interest; untraced code remains

unchanged. Therefore Hoed-pure is well suitable for debug-

ging real-world Haskell programs, which may use libraries

written in other programming languages.

In contrast to Hoed-cc, Hoed-pure is portable and pro-

duces a precise computation tree. We showed that the algo-

rithmic debugger asked substantially fewer questions using

Hoed-pure’s computation tree.

We plan to extend our method to also debug constants and

in particular cyclic data structures. We want to explore the

structure of value observation traces further. We believe that

the value observation technique can obtain even more infor-

mation than required for a computation tree and that using

this information can improve debugging beyond standard al-

gorithmic debugging. To obtain more information, we may

have to alter the value observation trace. Finally, to improve

debugging of real-world programs, we must shift from con-

structing a computation tree to examining numerous aspects

of the human-computer interface of a practical debugger.
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