95 research outputs found

    First demonstration of a Compton gamma imager based on silicon photomultipliers

    Full text link
    We are developing a rugged and person-transportable Compton gamma imager for use in security investigations of radioactive materials, and for radiological incident remediation. The imager is composed of layers of scintillator with light collection for the forward layers provided by silicon photomultipliers and for the rear layer by photomultiplier tubes. As a first step, we have developed a 1/5th-scale demonstration unit of the final imager. We present the imaging performance of this demonstration unit for Cs-137 at angles of up to 30 degrees off-axis. Results are also presented for Sn-113 and Na-22. This represents the first demonstration of the use of silicon photomultipliers as an embedded component for light collection in a Compton gamma imager.Comment: 19 pages, 6 figure

    Aligned-spin neutron-star-black-hole waveform model based on the effective-one-body approach and numerical-relativity simulations

    Get PDF
    After the discovery of gravitational waves from binary black holes (BBHs) and binary neutron stars (BNSs) with the LIGO and Virgo detectors, neutron-star--black-holes (NSBHs) are the natural next class of binary systems to be observed. In this work, we develop a waveform model for aligned-spin neutron-star--black-holes (NSBHs) combining a binary black-hole baseline waveform (available in the effective-one-body approach) with a phenomenological description of tidal effects (extracted from numerical-relativity simulations), and correcting the amplitude during the late inspiral, merger and ringdown to account for the NS's tidal disruption. In particular, we calibrate the amplitude corrections using NSBH waveforms obtained with the numerical-relativity spectral Einstein code (SpEC) and the SACRA code. Based on the simulations used, and on checking that sensible waveforms are produced, we recommend our model to be employed with NS's mass in the range 13M1-3 M_\odot, tidal deformability 0\mbox{-}5000, and (dimensionless) BH's spin magnitude up to 0.90.9. We also validate our model against two new, highly accurate NSBH waveforms with BH's spin 0.9 and mass ratios 3 and 4, characterized by tidal disruption, produced with SpEC, and find very good agreement. Furthermore, we compute the unfaithfulness between waveforms from NSBH, BBH, and BNS systems, finding that it will be challenging for the advanced LIGO-Virgo--detector network at design sensitivity to distinguish different source classes. We perform a Bayesian parameter-estimation analysis on a synthetic numerical-relativity signal in zero noise to study parameter biases. Finally, we reanalyze GW170817, with the hypothesis that it is a NSBH. We do not find evidence to distinguish the BNS and NSBH hypotheses, however the posterior for the mass ratio is shifted to less equal masses under the NSBH hypothesis

    Simulating Reionization in Numerical Cosmology

    Get PDF
    The incorporation of radiative transfer effects into cosmological hydrodynamical simulations is essential for understanding how the intergalactic medium (IGM) makes the transition from a neutral medium to one that is almost fully ionized. Here, we present an approximate numerical method designed to study in a statistical sense how a cosmological density field is ionized by a set of discrete point sources. A diffuse background radiation field is also computed self-consistently in our procedure. The method requires relatively few time steps and can be employed with simulations having high resolution. We describe the details of the algorithm and provide a description of how the method can be applied to the output from a pre-existing cosmological simulation to study the systematic reionization of a particular ionic species. As a first application, we compute the reionization of He II by quasars in the redshift range 3 to 6.Comment: 37 pages, 7 figures, Submitted to New

    Effectiveness and cost-effectiveness of daily all-over-body application of emollient during the first year of life for preventing atopic eczema in high-risk children (The BEEP trial): protocol for a randomised controlled trial.

    Get PDF
    BACKGROUND: Atopic eczema (AE) is a common skin problem that impairs quality of life and is associated with the development of other atopic diseases including asthma, food allergy and allergic rhinitis. AE treatment is a significant cost burden for health care providers. The purpose of the trial is to investigate whether daily application of emollients for the first year of life can prevent AE developing in high-risk infants (first-degree relative with asthma, AE or allergic rhinitis). METHODS: This is a protocol for a pragmatic, two-arm, randomised controlled, multicentre trial. Up to 1400 term infants at high risk of developing AE will be recruited through the community, primary and secondary care in England. Participating families will be randomised in a 1:1 ratio to receive general infant skin-care advice, or general skin-care advice plus emollients with advice to apply daily to the infant for the first year of life. Families will not be blinded to treatment allocation. The primary outcome will be a blinded assessment of AE at 24 months of age using the UK Working Party Diagnostic Criteria for Atopic Eczema. Secondary outcomes are other definitions of AE, time to AE onset, severity of AE (EASI and POEM), presence of other allergic diseases including food allergy, asthma and hay fever, allergic sensitisation, quality of life, cost-effectiveness and safety of the emollients. Subgroup analyses are planned for the primary outcome according to filaggrin genotype and the number of first-degree relatives with AE and other atopic diseases. Families will be followed up by online and postal questionnaire at 3, 6, 12 and 18 months with a face-to-face visit at 24 months. Long-term follow-up until 60 months will be via annual questionnaires. DISCUSSION: This trial will demonstrate whether skin-barrier enhancement through daily emollient for the first year of life can prevent AE from developing in high-risk infants. If effective, this simple and cheap intervention has the potential to result in significant cost savings for health care providers throughout the world by preventing AE and possibly other associated allergic diseases. TRIAL REGISTRATION: ISRCTN registry; ID: ISRCTN21528841 . Registered on 25 July 2014

    Emollients for prevention of atopic dermatitis; 5‐year findings from the BEEP randomised trial

    Get PDF
    Background The effectiveness of emollients for preventing atopic dermatitis/eczema is controversial. The Barrier Enhancement for Eczema Prevention trial evaluated the effects of daily emollients during the first year of life on atopic dermatitis and atopic conditions to age 5 years. Methods 1394 term infants with a family history of atopic disease were randomized (1:1) to daily emollient plus standard skin-care advice (693 emollient group) or standard skin-care advice alone (701 controls). Long-term follow-up at ages 3, 4 and 5 years was via parental questionnaires. Main outcomes were parental report of a clinical diagnosis of atopic dermatitis and food allergy. Results Parents reported more frequent moisturizer application in the emollient group through to 5 years. A clinical diagnosis of atopic dermatitis between 12 and 60 months was reported for 188/608 (31%) in the emollient group and 178/631 (28%) in the control group (adjusted relative risk 1.10, 95% confidence interval 0.93 to 1.30). Although more parents in the emollient group reported food reactions in the previous year at 3 and 4 years, cumulative incidence of doctor-diagnosed food allergy by 5 years was similar between groups (92/609 [15%] emollients and 87/632 [14%] controls, adjusted relative risk 1.11, 95% confidence interval 0.84 to 1.45). Findings were similar for cumulative incidence of asthma and hay fever. Conclusions Daily emollient application during the first year of life does not prevent atopic dermatitis, food allergy, asthma or hay fever

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore