11 research outputs found

    <i>USP27X </i>variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms

    Get PDF
    Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p

    <i>USP27X </i>variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms

    Get PDF
    Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p

    USP27X variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms

    Get PDF
    Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p

    Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks

    No full text
    Eukaryotic cells are constantly exposed to both endogenous and exogenous stressors that promote the induction of DNA damage. Of this damage, double strand breaks (DSBs) are the most lethal and must be efficiently repaired in order to maintain genomic integrity. Repair of DSBs occurs primarily through one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these pathways is in part regulated by histone post-translational modifications (PTMs) including ubiquitination. Ubiquitinated histones not only influence transcription and chromatin architecture at sites neighboring DSBs but serve as critical recruitment platforms for repair machinery as well. The reversal of these modifications by deubiquitinating enzymes (DUBs) is increasingly being recognized in a number of cellular processes including DSB repair. In this context, DUBs ensure proper levels of ubiquitin, regulate recruitment of downstream effectors, dictate repair pathway choice, and facilitate appropriate termination of the repair response. This review outlines the current understanding of histone ubiquitination in response to DSBs, followed by a comprehensive overview of the DUBs that catalyze the removal of these marks

    USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1

    No full text

    USP44 Is an Integral Component of N-CoR that Contributes to Gene Repression by Deubiquitinating Histone H2B

    Get PDF
    SummaryDecreased expression of the USP44 deubiquitinase has been associated with global increases in H2Bub1 levels during mouse embryonic stem cell (mESC) differentiation. However, whether USP44 directly deubiquitinates histone H2B or how its activity is targeted to chromatin is not known. We identified USP44 as an integral subunit of the nuclear receptor co-repressor (N-CoR) complex. USP44 within N-CoR deubiquitinates H2B in vitro and in vivo, and ablation of USP44 impairs the repressive activity of the N-CoR complex. Chromatin immunoprecipitation (ChIP) experiments confirmed that USP44 recruitment reduces H2Bub1 levels at N-CoR target loci. Furthermore, high expression of USP44 correlates with reduced levels of H2Bub1 in the breast cancer cell line MDA-MB-231. Depletion of either USP44 or TBL1XR1 impairs the invasiveness of MDA-MB-231 cells in vitro and causes an increase of global H2Bub1 levels. Our findings indicate that USP44 contributes to N-CoR functions in regulating gene expression and is required for efficient invasiveness of triple-negative breast cancer cells

    Usp22 Overexpression Leads to Aberrant Signal Transduction of Cancer-Related Pathways but Is Not Sufficient to Drive Tumor Formation in Mice

    No full text
    Usp22 overexpression is observed in several human cancers and is correlated with poor patient outcomes. The molecular basis underlying this correlation is not clear. Usp22 is the catalytic subunit of the deubiquitylation module in the SAGA histone-modifying complex, which regulates gene transcription. Our previous work demonstrated that the loss of Usp22 in mice leads to decreased expression of several components of receptor tyrosine kinase and TGFβ signaling pathways. To determine whether these pathways are upregulated when Usp22 is overexpressed, we created a mouse model that expresses high levels of Usp22 in all tissues. Phenotypic characterization of these mice revealed over-branching of the mammary glands in females. Transcriptomic analyses indicate the upregulation of key pathways involved in mammary gland branching in mammary epithelial cells derived from the Usp22-overexpressing mice, including estrogen receptor, ERK/MAPK, and TGFβ signaling. However, Usp22 overexpression did not lead to increased tumorigenesis in any tissue. Our findings indicate that elevated levels of Usp22 are not sufficient to induce tumors, but it may enhance signaling abnormalities associated with oncogenesis

    TGFβ-activated USP27X deubiquitinase regulates cell migration and chemoresistance via stabilization of snail1

    No full text
    In cancer cells, epithelial-to-mesenchymal transition (EMT) is controlled by Snail1, a transcriptional factor also required for the activation of cancer-associated fibroblasts (CAF). Snail1 is short-lived in normal epithelial cells as a consequence of its coordinated and continuous ubiquitination by several F-box-specific E3 ligases, but its degradation is prevented in cancer cells and in activated fibroblasts. Here, we performed an siRNA screen and identified USP27X as a deubiquitinase that increases Snail1 stability. Expression of USP27X in breast and pancreatic cancer cell lines and tumors positively correlated with Snail1 expression levels. Accordingly, downregulation of USP27X decreased Snail1 protein in several tumor cell lines. USP27X depletion impaired Snail1-dependent cell migration and invasion and metastasis formation and increased cellular sensitivity to cisplatin. USP27X was upregulated by TGFβ during EMT and was required for TGFβ-induced expression of Snail1 and other mesenchymal markers in epithelial cells and CAF. In agreement with this, depletion of USP27X prevented TGFβ-induced EMT and fibroblast activation. Collectively, these results indicate that USP27X is an essential protein controlling Snail1 expression and function and may serve as a target for inhibition of Snail1-dependent tumoral invasion and chemoresistance. SIGNIFICANCE: These findings show that inhibition of USP27X destabilizes Snail1 to impair EMT and renders tumor cells sensitive to chemotherapy, thus opening new strategies for the inhibition of Snail1 expression and its protumoral actions.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/1/33/F1.large.jpg.This study was funded by grants awarded by Ministerio de Economía y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional-FEDER to A. García de Herreros (SAF2013-48849-C2-1-R and SAF2016-76461-R) and to V.M. Díaz (SAF2013-48849-C2-2-R). Research at the A. García de Herreros lab is supported by funds from the Fundación Científica de la Asociación Española contra el Cáncer and from the Instituto de Salud Carlos III (PIE15/00008). Research at the B.S. Atanassov lab is supported by the Rosswell Park Cancer Institute and NCI grant P30CA016056. Research at the J. Arribas lab is supported by funds from the Breast Cancer Research Foundation (BCRF-17-008) and Instituto de Salud Carlos III (PI16/00253)

    TGFβ-activated USP27X deubiquitinase regulates cell migration and chemoresistance via stabilization of snail1

    No full text
    In cancer cells, epithelial-to-mesenchymal transition (EMT) is controlled by Snail1, a transcriptional factor also required for the activation of cancer-associated fibroblasts (CAF). Snail1 is short-lived in normal epithelial cells as a consequence of its coordinated and continuous ubiquitination by several F-box-specific E3 ligases, but its degradation is prevented in cancer cells and in activated fibroblasts. Here, we performed an siRNA screen and identified USP27X as a deubiquitinase that increases Snail1 stability. Expression of USP27X in breast and pancreatic cancer cell lines and tumors positively correlated with Snail1 expression levels. Accordingly, downregulation of USP27X decreased Snail1 protein in several tumor cell lines. USP27X depletion impaired Snail1-dependent cell migration and invasion and metastasis formation and increased cellular sensitivity to cisplatin. USP27X was upregulated by TGFβ during EMT and was required for TGFβ-induced expression of Snail1 and other mesenchymal markers in epithelial cells and CAF. In agreement with this, depletion of USP27X prevented TGFβ-induced EMT and fibroblast activation. Collectively, these results indicate that USP27X is an essential protein controlling Snail1 expression and function and may serve as a target for inhibition of Snail1-dependent tumoral invasion and chemoresistance. SIGNIFICANCE: These findings show that inhibition of USP27X destabilizes Snail1 to impair EMT and renders tumor cells sensitive to chemotherapy, thus opening new strategies for the inhibition of Snail1 expression and its protumoral actions.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/1/33/F1.large.jpg.This study was funded by grants awarded by Ministerio de Economía y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional-FEDER to A. García de Herreros (SAF2013-48849-C2-1-R and SAF2016-76461-R) and to V.M. Díaz (SAF2013-48849-C2-2-R). Research at the A. García de Herreros lab is supported by funds from the Fundación Científica de la Asociación Española contra el Cáncer and from the Instituto de Salud Carlos III (PIE15/00008). Research at the B.S. Atanassov lab is supported by the Rosswell Park Cancer Institute and NCI grant P30CA016056. Research at the J. Arribas lab is supported by funds from the Breast Cancer Research Foundation (BCRF-17-008) and Instituto de Salud Carlos III (PI16/00253)
    corecore