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USP27X variants underlying X-linked intellectual disability
disrupt protein function via distinct mechanisms
Intisar Koch1,* , Maya Slovik2,3,* , Yuling Zhang4, Bingyu Liu4, Martin Rennie5 , Emily Konz1 , Benjamin Cogne6,7,
Muhannad Daana8, Laura Davids9, Illja J Diets10, Nina B Gold11,12, Alexander M Holtz13 , Bertrand Isidor6,7,
Hagar Mor-Shaked2,3, Juanita Neira Fresneda14, Karen Y Niederhoffer15, Mathilde Nizon6,7, Rolph Pfundt10, MEH Simon16,
APA Stegmann17 , Maria J Guillen Sacoto18, Marijke Wevers10 , Tahsin Stefan Barakat19,20 , Shira Yanovsky-Dagan3,
Boyko S Atanassov21 , Rachel Toth22 , Chengjiang Gao4,*, Francisco Bustos1,23,* , Tamar Harel2,3,*

Neurodevelopmental disorders with intellectual disability (ND/
ID) are a heterogeneous group of diseases driving lifelong deficits
in cognition and behavior with no definitive cure. X-linked in-
tellectual disability disorder 105 (XLID105, #300984; OMIM) is a
ND/ID driven by hemizygous variants in the USP27X gene
encoding a protein deubiquitylase with a role in cell proliferation
and neural development. Currently, only four genetically diag-
nosed individuals from two unrelated families have been de-
scribed with limited clinical data. Furthermore, the mechanisms
underlying the disorder are unknown. Here, we report 10 new
XLID105 individuals from nine families and determine the impact
of gene variants on USP27X protein function. Using a combination
of clinical genetics, bioinformatics, biochemical, and cell biology
approaches, we determined that XLID105 variants alter USP27X
protein biology via distinct mechanisms including changes in
developmentally relevant protein–protein interactions and
deubiquitylating activity. Our data better define the phenotypic
spectrum of XLID105 and suggest that XLID105 is driven by USP27X
functional disruption. Understanding the pathogenic mecha-
nisms of XLID105 variants will provide molecular insight into
USP27X biology and may create the potential for therapy
development.
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Introduction

Neurodevelopmental disorders with intellectual disability (ND/ID)
are highly incapacitating conditions that affect 2–3% of the pop-
ulation (Leonard & Wen, 2002; Schalock et al, 2007; Maulik et al,
2011). Among these, ~15% are X-linked (Vissers et al, 2016) and over
160 genes on the X chromosome have been associated with
X-linked intellectual disability (XLID) (Schwartz et al, 2023). Affected
individuals have lifelong impairments in cognitive and adaptive
functions that first manifest during early infancy. There is no cure
for ND/ID, and currently available treatments are largely focused
on symptom management (Picker & Walsh, 2013). An enhanced
understanding of the molecular mechanisms underlying ND/ID
may guide the potential development of therapeutic interventions.

Protein modification by ubiquitylation can drive changes in
protein stability, protein–protein interaction, localization, and
function in signaling pathways (Yau & Rape, 2016). Ubiquitylation is
an essential cellular mechanism that is frequently disrupted in ND/
ID (Ebstein et al, 2021). The mechanism involves the covalent
transfer of the 76-aa protein ubiquitin to primarily lysine residues in
protein substrates in a three-step enzymatic cascade (Hershko
et al, 2000; Petroski, 2008), which requires ATP consumption and
involves the activity of E1 activating, E2 conjugating, and E3 ligase
enzymes (Pickart, 2001). Among the ubiquitylation genes associated
with ND/ID, E3 ligases are the largest subgroup of which the
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prototype UBE3A is associated with Angelman disease (105830; MIM)
(Kishino et al, 1997; Matsuura et al, 1997). The phenotypes associated
with this subgroup are dependent upon the substrates and signals
downstream of the ligase enzyme activity. Most of these syndromes
include developmental delay, intellectual disability, dysmorphic
facial features, hypotonia, and seizures and may be accompanied
by congenital anomalies (Ebstein et al, 2021).

Ubiquitylation is reversible by the action of the deubiquitylase
(DUB) family of proteases (Komander et al, 2009). DUBs are highly
represented among pathogenic variants causing ND/ID (Hu et al,
2016; Santiago-Sim et al, 2017; Johnson et al, 2020; Beck et al, 2021).
However, the impact of these variants on catalytic activity and
enzymatic function remains poorly understood.

Ubiquitin-specific protease 27 X-linked (USP27X) is a DUB that has
been associated to important cellular functions such as cell pro-
liferation and immune response. (Atanassov et al, 2016; Weber et al,
2016; Dong et al, 2018; Guo et al, 2019; Lambies et al, 2019; Seo et al,
2020; Alam et al, 2022; Dold et al, 2022). Furthermore, USP27X targets
the developmental regulator HES1 to regulate neuronal differen-
tiation (Kobayashi et al, 2015). Importantly, hemizygous variants in
the USP27X gene have been recently linked to an ND/ID referred to
by OMIM as XLID disorder 105 (XLID105, #300984; OMIM) (Hu et al,
2016; Kniffin, 2016). However, the mechanisms by which XLID105
USP27X variants affect USP27X function are currently unknown.

Here, we combine human genetics, bioinformatics, cell biology,
and biochemical approaches to study the molecular basis of
XLID105. This disorder is characterized by intellectual disability (ID),
speech delay, and autistic features. Via functional studies focusing
on USP27X protein biology, we describe potential pathogenic
mechanisms of the different XLID105 USP27X variants and propose
that USP27X functional disruption is amajor pathogenicmechanism
of XLID105.

Results

Clinical reports of individuals with USP27X variants

Detailed information on 10 individuals from nine families (Fig 1A
and B) with USP27X variants is provided in Tables 1, S1, and S2. All
affected individuals were male and ranged in age from ~3-36 yr. ID
and/or speech delay were seen in all individuals with variable
expressivity. Other neurodevelopmental issues, including autism
spectrum disorder (6/10), attention deficit and hyperactivity dis-
order (7/10), anxiety (3/10), and behavioral or social–emotional
problems (5/10) were prevalent within the cohort (Fig 1C). Six in-
dividuals had motor delay with two of them exhibiting gait
abnormalities (wide-based or nonspecific unstable gait). One
individual had febrile seizures and another had refractory epilepsy.
Ophthalmological abnormalities included myopia, hypermetropia,
strabismus, and astigmatism. Most individuals had a head cir-
cumference within the normal range, but two were reported with
microcephaly. Dysmorphic features were recorded in several in-
dividuals, but seemed mostly nonspecific, although cupped/
protruding ears and an elongated face with pointed chin were
noted in several individuals. Other clinical manifestations seen in a

single family, and therefore not necessarily within the phenotypic
spectrum, included precocious puberty, neurosensory hearing loss,
metopic craniosynostosis, severe feeding difficulties, and pig-
mentation abnormalities.

Exome sequencing identifies hemizygous variants in USP27X

Variants in USP27X (NM_001145073.3) were identified in all indi-
viduals (Fig 1B). These included two stop-gain variants (c.106C>T;
p.[Gln36Ter] and c.394G>T; p.[Glu132Ter]), one frameshift variant
(c.1205dup; p.[Ala403fs]), and five missense variants (c.226G>A;
[p.Gly76Ser], c.431A>G; p.[Tyr144Cys], c.541A>G; p.[Lys181Glu]
c.937T>G; p.[Phe313Val], and c.1211G>A; p.[Ser404Asn]). The stop-gain
would be expected to escape nonsense mediated decay, as USP27X
has a single exon, yet would lead to premature truncation of the 438
aa protein. Themissense variant p.(Ser404Asn) has one hemizygous
call in gnomAD but was identified in two unrelated families with
overlapping phenotypes and was therefore pursued. Similarly, a
variant affecting the same residue as p.(Lys181Glu) - p.(Lys181Asn)
was seen once as hemizygous in gnomAD. The other variants were
neither observed in gnomAD nor in the TOPMed Bravo database.
Computational prediction tools suggest either a deleterious effect
or ambivalent predictions for the different variants (Table S3). CADD
scores of the variants ranged from 21.9 to 25.5. All mothers available
for testing were heterozygous for the variant. The mothers of two
individuals were not available for testing (families 8 and 9).
Whereas six mothers were reported to have normal cognitive
function, two hadmild ID: one with a frameshift variant and another
with unknown USP27X variant status, but who had a child with a
stop-gain variant. Clinical information for one biological mother
was missing. This presentation is consistent with the X-linked re-
cessive inheritance pattern, where males are affected, and females
may have either no or mild manifestations.

Missense variants in USP27X found here and the previously
described variant c.1141T>C; p. (Tyr381His) (Hu et al, 2016) result in
changes to residues conserved across mammals (Fig S1). The fact
that we observe similar clinical manifestations in individuals with
missense and truncating USP27X variants suggests that missense
variants likely result in the disruption of USP27X function and can
affect one or more aspects of USP27X protein biology. Therefore, we
decided to functionally characterize the missense variants, here-
after referred to by short nomenclature: G76S, Y144C, K181E, F313V,
Y381H, and S404N.

XLID105 USP27X mutants are stable and correctly localized to
the nucleus

To investigate how USP27X variants affect USP27X protein locali-
zation and stability, we introduced human USP27X into Usp27x−/y

mouse embryonic stem cells (ESCs) (Atanassov et al, 2016). WT
USP27X is localized mainly to the nucleus with some cytoplasmic
expression (Fig 2A) as previously described (Atanassov et al, 2016;
Dold et al, 2022). Similar to the WT, XLID105 mutants largely localize
to the nucleus (Fig 2A). Likewise, when we compared protein sta-
bility of WT and XLID105 mutant USP27X in a cycloheximide chase
experiment, no significant differences were detected (Fig 2B). Taken
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together, these data indicate that these XLID105 variants do not
have a major impact on USP27X localization or protein stability.

XLID105 variants are predicted disruptive of the USP27X
protein structure

Mutations in DUB protein sequence may disrupt its folding and, in
turn, its function, (Hu et al, 2002) so we evaluated the structural
relevance of USP27X residues mutated in XLID105. USP family en-
zymes are characterized by a USP domain that catalyzes ubiquitin
removal (Hu et al, 2002, 2005; Renatus et al, 2006). This domain is
formed by three subregions: the fingers, the palm, and the thumb
(Hu et al, 2002). All three subregions accommodate ubiquitin, with
the palm and thumb catalyzing ubiquitin cleavage. To gain insight
into how XLID105 variants may impact USP27X structure and
ubiquitin recognition, we analyzed the AlphaFold model of USP27X
and computed a ColabFold model of USP27X bound to ubiquitin (Fig
3A and B). The modeled USP fold and ubiquitin were confidently
predicted, as was the interaction between USP27X and ubiquitin (Fig
S2A and B). In these models, we analyzed the location of residues in
USP27X that are mutated in XLID105 (G76, Y144, K181, F313, Y381, and
S404). K181 is adjacent to the thumb, whereas G76 and Y144 are

located within this subdomain of the USP fold. F313, Y381, and S404
are located within the palm subdomain (Fig 3A). The sidechain of
S404 contributes intramolecular hydrogen bonds (Fig 3A). This
structural feature is highly conserved in the closely related DUBs
USP22 and USP51 where S503 in USP22 and T689 in USP51 stabilize
a similar local structure (Fig S2C). Our model of USP27X bound to
ubiquitin resembles a prototypical USP domain–ubiquitin inter-
action (Hu et al, 2002). Importantly, the sidechain of Y381 of
USP27X forms hydrogen bonds with the backbone of ubiquitin,
whereas F313 buttresses the ubiquitin tail (Fig 3B). Relative solvent
accessible surface area (RSA) calculations indicate that Y144, K181,
and S404 are relatively surface-exposed residues and that G76,
F313, and Y381 are buried within the predicted structures (Fig 3C).

We predict that XLID105 variants F313V and Y381H disrupt the
interaction with ubiquitin, whereas G76S and S404N may perturb
the USP fold. In particular, the introduction of side chain atoms
through G76S likely results in steric clashes with surrounding
residues. The charge reversal of K181E may also have significant
effects on the protein structure. However, from these predic-
tions, the structural impact of the Y144C variant remains unclear
suggesting that this variant affects other aspects of USP27X
biology.

Figure 1. Pedigrees suggestive of X-linked inheritance.
(A) Pedigrees for variant segregation in nine families with 10 affected individuals harboring USP27X variants drawn using QuickPed (Vigeland, 2022). Themedical history
of family members is described in the supplementary material. (B) Location of variants on a 2D schematic diagram of the USP27X protein. (C) Bar graph depicting the
prevalence of the most commonly shared clinical manifestations. Human Phenotype Ontology (HP) terms are shown.
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USP27X XLID105 variants display reduced catalytic activity

Given that deubiquitylating activity can vary depending on the
substrate, we assessed the impact of XLID105 variants on the
USP27X core catalytic mechanism using substrate-independent
in vitro assays. We expressed recombinant wild-type or mutant
USP27X and confirmed that the thermal stability of USP27X
was not affected by the XLID105 variants in thermal shift assays
(Fig S3A).

It has been reported that DUB pathogenic variants can selec-
tively affect catalytic activity towards distinct ubiquitin chain
linkages (Beck et al, 2021). Given that USP27X can cleave K48 and K63
ubiquitin chains (Ritorto et al, 2014), we directly measured the
catalytic activity of the USP27X XLID105 variants on K48 and K63 di-
ubiquitin chain cleavage assays in vitro. We found that the G76S,
Y144C, F313V, Y381H, and S404N variants significantly impair cata-
lytic activity, and observed similar results for both K48 and K63 di-
ubiquitin (Fig 4A and B). These results are consistent with the
predicted role of F313 and Y381 in ubiquitin interaction and the
predicted structural relevance of G76S and S404N (Fig 3). These data
indicate that most of the XLID105 missense variants disrupt USP27X
catalytic activity, which may represent a major pathogenic mech-
anism in this disorder.

To further characterize these variants, we used a DUB activity-
based probe. These probes consist of ubiquitin fused to a reactive
carboxy terminal warhead. This warhead reacts with the DUB
catalytic cysteine as this residue attacks the probe (Ekkebus et al,
2014). This assay allows for analysis of the critical steps of ubiquitin
recognition and nucleophilic attack of the ubiquitin substrate
isopeptide bond by the catalytic cysteine residue (Ekkebus et al,
2013). The ubiquitin–propargylamide (Ub-PRG) probe (Ekkebus et al,
2013) labels recombinant USP27X as it does USP2 in vitro (Fig S3B).
As expected, USP27X Ub-PRG labelling was dependent on USP27X
catalytic cysteine (C87) (Fig S3C) and was reduced when the reaction
was performed in the presence of the broad DUB inhibitor PR-619
(Fig S3D). We next sought to determine the impact of XLID105
variants on USP27X ubiquitin recognition using the Ub-PRG probe
labelling assay. We observed that the G76S, F313V, Y381H, and S404N
mutant proteins displayed significantly decreased probe labelling
compared with the control (Fig 4C). These data indicate that Y144C
and K181E can still recognize ubiquitin and undergo nucleophilic
attack, consistent with their surface exposure and location away
from the active site (Fig 3); surprisingly, S404N cannot, suggesting
the helix to which S404 forms a hydrogen bond (Fig S2C) may be
allosterically important for ubiquitin binding and nucleophilic
attack.

Figure 2. XLID105 variants do not affect USP27X localization or protein stability.
(A) Analysis of USP27X XLID105 mutant protein localization. Usp27x−/y ESCs were transfected with plasmids encoding the indicated HA-tagged USP27X mutants and their
localization was analyzed via anti-HA (green) immunofluorescence and confocal microscopy. Actin staining (red) is shown as cytoskeletonmarker and Hoechst (blue) was
used as a nuclear marker. Scalebar: 20 μm, (n = 3). Quantification of the ratio between the nuclear and total HA-USP27X fluorescence intensity of 10 confocal image frames
per variant is shown. No significant differences were found using one-way ANOVA analysis (data are presented as mean ± SEM). (B) Analysis of USP27X XLID105 mutant
protein stability. Usp27x−/y ESCs were transfected with plasmids encoding the indicated HA-tagged USP27X constructs and cells were treated with cycloheximide for the
indicated times. HA-tagged USP27X expression was analyzed via immunoblotting. ERK1 was used as a loading control. Quantification of relative HA-USP27X levels is
displayed (data are presented as mean ± SEM, n = 3). No significant differences were found by t test analyses comparing each mutant with USP27X WT across four time
points.
Source data are available for this figure.
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USP27X XLID105 variants alter interaction with a key USP27X
protein partner

We also determined the impact of XLID105 variants on USP27X
protein–protein interactions that are key for USP27X function. USP27X
binds to a complex containing ATXN7L3 and ENY2 to catalyze histone
H2B deubiquitylation and regulate cell proliferation (Atanassov et al,
2016). Correct function of this complex and histone H2B deubiquity-
lation are required for normal development (Herceg et al, 2001;
Weake et al, 2008; Koutelou et al, 2019; Wang et al, 2021). Therefore, we
sought to determine if USP27X XLID105 variants disrupted USP27X
interaction with components of that complex. USP27X–ATXN7L3 in-
teraction is detectable by co-immunoprecipitationwhen both proteins
are expressed in Usp27x−/y ESCs (Fig 5A). When we compared the
ATXN7L3 interaction levels of WT USP27X with the XLID105 variants
(Fig 5B), we found that the G76S and Y381H variants significantly impair
this interaction. We also found a significant increase in the enrichment
of ATXN7L3 by USP27X Y144C. This evidence indicates that the G76S,
Y144C, and Y381H variants alter a key USP27X protein interaction and
could therefore affect developmentally relevant functions of USP27X.

Discussion

Here, we expanded the phenotypic spectrum associated with USP27X
variants by reporting an additional 10 individuals from nine families,

with different combinations of intellectual disability, developmental
delay, autism spectrum disorder, ADHD, anxiety, and a tendency for
ophthalmological abnormalities. We demonstrated that most XLID105
variants disrupt distinct aspects of USP27X protein biology that could
perturb its function. Therefore, we propose that XLID105 pathogenesis
is because of USP27X functional disruption. We determined that G76S,
Y144C, and Y381H drive changes in protein–protein interactions and
that five variants disrupt catalytic activity, with G76S, F313V, Y381H, and
S404N being the most severe in their disruption (Table S3). This was
consistent with our structural modelling which suggested that these
four variants may disrupt the USP structure or interaction with
ubiquitin. However, the K181E variant appeared to be unaffected in
every test, aside from our in silico prediction of structural relevance.
This variant may mediate disruption that is substrate or cell-context
dependent. Otherwise, this may be a hypomorphic variant which
correlates with the milder phenotype, that is, lack of intellectual
disability and autism in the proband. Therefore, more functional
studies or additional families with this variant are necessary to clarify
its significance. Future studies may also allow us to decipher the
genotype–phenotype correlation for this syndrome.

Several DUBs are associated with ND/ID syndromes (Jolly et al,
2022). However, structural studies and functional analyses have only
recently been recognized as an important step to understanding
pathogenesis (Ribarski et al, 2009; Beck et al, 2021; Chiang et al, 2021).
Although members of the USP family are mutationally disrupted
in ND/ID (Adorno et al, 2013; Hu et al, 2016; Chiang et al, 2021),

Figure 3. Structurally relevant USP27X residues are mutated in XLID105.
(A) USP27X predicted structure from the AlphaFold database. The fingers, palm, and thumb subdomains are colored pink, purple, and green, respectively. Insertions in the
USP domain (>6 residue stretches with predicted Local Distance Difference Test scores <80) are colored gray. Residues found to be mutated in individuals with XLID105 are
highlighted in boxes, with the confidence score (predicted Local Distance Difference Test) given. Hydrogen bonds are shown as dashed lines. (B) F313 and Y381 are predicted to
be important to USP27X ubiquitin binding. The USP27X–ubiquitin complex predicted using ColabFold (three replicate computations shown). Close-up views of USP27X F313
and Y381 residues in contact with ubiquitin (yellow) are shown. Hydrogen bonds are depicted as dashed lines. (B, C) Analysis of fractional solvent accessible surface area of
residues found to be mutated in XLID105 individuals, calculated from the AlphaFold structures from panel (B) (Data are presented as mean ± SEM).
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there is a lack of structural and direct functional studies of the
impact of variants on USP DUB catalytic activity. We used AlphaFold
(Jumper et al, 2021) to model the potential importance to folding of
residues that are mutated in XLID105 and found that F313 and Y381
lie in regions within the USP fold that participate in ubiquitin
recognition. We confirmed that the mutation of these residues in
XLID105 disrupted function. Our results with the F313V variant are
consistent with the fact that the equivalent residue of USP12 (F262)
mutated to alanine dramatically reduces UAF1-stimulated catalysis
of ubiquitin–AMC (Li et al, 2016). Although the USP domain in USP27X
is consistent with the structure conserved within the USP family, it is
known that DUB activity of individual members of the family can
be modulated by specific allosteric regulation of this domain
(Atanassov et al, 2016; Li et al, 2016; Rennie et al, 2021). Inserts in the
USP domain can also contribute to specificity and regulation of
USP27X catalytic activity (Tencer et al, 2016). Particularly for USP27X,
an amino terminal extension resulting from a noncanonical
translation start that occurs in some cell types (Atanassov et al,
2016; Dold et al, 2022) may play a role in regulation of catalytic
activity. Furthermore, we performed in vitro assays using

recombinant proteins to assess the impact of variants on USP27X
catalysis. Activity-based probes are a tool to rapidly visualize and
measure changes in ubiquitin recognition and nucleophilic attack,
whereas di-ubiquitin cleavage assays assess catalytic activity.
Because these techniques measure different biochemical mech-
anisms, discrepancies in the results they yield are to be expected
(Keijzer et al, 2023 Preprint). Using these assays, we demonstrated
that the F313V and Y381H variants interfere with ubiquitin recog-
nition or nucleophilic attack, most likely via an auxiliary mechanism
stabilizing the ubiquitin tail. Most USP27X XLID105 variants tested
disrupted catalytic activity in ubiquitin cleavage assays with dif-
ferences in the severity of the disruption. This evidence supports
the use of these approaches in the future to screen newly dis-
covered USP27X or USP-type DUB variants for changes in activity
that could drive intellectual disorders.

We demonstrated that the XLID105 variants G76S, Y144C, and
Y381H alter USP27X interaction with the protein partner ATXN7L3.
Y144 lies in a relatively exposed region within the palm subdomain
of the USP fold. This result is compatible with a model in which Y144
either mediates protein–protein interaction or is subjected to

Figure 4. XLID105 variants disrupt USP27X substrate-independent deubiquitylating activity.
(A, B) GST-tagged WT or XLID105 mutant USP27X were incubated with K48 (A) or K63 (B) di-ubiquitin chains respectively. Data are presented as mean ± SEM, one-way
ANOVA followed by Tukey’s analysis, K48: P = 0.0474 (*), P = 0.0080 (**), P < 0.0001 (****); K63: P = 0.0041 (**), P = 0.0001 (***), P < 0.0001 (****). (C) GST-tagged wild-type or
XLID105 mutant USP27X was incubated with Ub-PRG probe and labelling was analyzed via immunoblotting. Labelling quantification of three replicates is shown. Data are
presented as mean ± SEM, one-way ANOVA followed by Tukey’s analysis G76S: P = 0.0264(*), F313V: P = 0.0021 (**), Y381H: P = 0.0129 (*), and S404N: P < 0.0001 (****). A
merged GST/HA (USP/Ub-PRG) image is displayed for visualization of the probe labelling.
Source data are available for this figure.
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posttranslational modification. The Y144 change to cysteine in
XLID105 is expected to dramatically affect this regulation. The
impaired interaction of G76S and Y381H with ATXN7L3 may be as-
sociated with USP domain-folding defects. We have shown that
ATXN7L3 interaction is important for USP27X-mediated histone H2B
deubiquitylation at specific loci (Atanassov et al, 2016). ATXN7L3 is a
limiting factor for the activity of distinct complexes that contain
USP22 (SAGA), USP27X, or USP51, which mediate Histone H2B deu-
biquitylation on different target genes. These complexes compete for
ATXN7L3 and are subjected to a fine balance (Atanassov et al, 2016).
We predict that the variant-induced changes in USP27X affinity to
ATXN7L3 may disrupt this balance. This could drive a dysregulation
of the geneexpressionpatterns that theATXN7L3-containing complexes
mediate.

USP27X is expressed in a wide range of tissues but is present at
higher levels in the cortical and sub cortical brain regions and is
even more elevated in the cerebellum (GTEx Consortium, 2013).
Importantly, USP27X-mediated deubiquitylation of HES1 regulates
neuronal differentiation (Kobayashi et al, 2015). Furthermore,
USP27X mediates histone H2B deubiquitylation, which is critical for
development (Weake et al, 2008). However, the function of USP27X
in nervous system development is not fully understood. Deter-
mining the direct involvement of these USP27X-dependent axes in
neurodevelopment will be key to better understanding the de-
velopmental basis of XLID105.

Our data establish that XLID105 is a USP27X functional dis-
ruption disorder. However, the idea of developing therapies for
XLID105 raises the question of whether genetic intellectual
disabilities are treatable disorders. Recent studies in animal
models show encouraging results of the existence of a therapeutic

window for intervention when individual ID genes are disrupted
during development and reintroduced after birth (Mei et al, 2016;
Creson et al, 2019; Terzic et al, 2021). It is yet to be determined
whether this window exists for XLID105. If so, our study could
set the basis for future therapies directed at restoring USP27X
function.

Materials and Methods

Ethics statement

Families provided informed consent in accordance with the ethical
standards of the responsible national and institutional committees
on human subject research. Probands were ascertained through
GeneMatcher (Sobreira et al, 2015).

Exome sequencing

Exome analysis was pursued on DNA extracted from whole blood of
the proband (families 1, 6, 7, 8, and 9) or proband and parents (families
2, 3, 4, and 5) at each contributing center. In Family 1, exonic sequences
were enriched in the DNA sample using the IDT xGen Exome Research
Panel V1.0 capture (Integrated DNA Technologies), and sequenced on a
NovaSeq 6000 sequencing system (Illumina). Data analysis including
read alignment and variant calling was performed with DNAnexus
software (DNAnexus, Inc.) using default parameters, with the human
genome assembly hg19/GRCh37 as reference. Variants were filtered
out if they were off-target (intronic variants >8 bp from splice junction),

Figure 5. USP27X XLID105 variants drive altered ATXN7L3 interaction.
(A) Detection of specific USP27X–ATXN7L3 protein interaction. Usp27x−/y ESCs were transfected with plasmids encoding HA-tagged USP27X and FLAG-tagged ATXN7L3.
Lysates were subjected to anti-HA or anti-FLAG immunoprecipitation and immunoblotting, (n = 3). (B) Analysis of ATXN7L3 interaction with USP27X XLID105 variants.
(A) Usp27x−/y ESCs were transfected with plasmids encoding FLAG-tagged ATXN7L3 or HA-tagged WT or the indicated XLID105 mutants and samples were subjected to anti-
HA immunoprecipitation as in (A), (n = 3). (A, B) Co-immunoprecipitation and lysate control immunoblots are shown in (A, B). (A, B) ERK1 levels are shown in the lysates as
loading control for (A, B). (B) A merged HA/FLAG image is displayed for the immunoprecipitates in (B). Quantification of ATXN7L3 enrichment by the individual USP27X
mutants is displayed. Data are presented as mean ± SEM, One-way ANOVA followed by Tukey’s analysis P = 0.0003 (***), P > 0.0001 (****).
Source data are available for this figure.
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synonymous (unless <4 bp from the splice site) or had minor allele
frequency > 0.01 in the Genome Aggregation Database (gnomAD) or
local dataset. Bioinformatic predictions (i.e., PolyPhen, SIFT, Muta-
tionTaster, and/or CADD scores) were used to prioritize variants in
genes with potential relevance to the phenotype.

Clinical data

Percentiles for head circumferences were determined according to
the Center for Disease Control and Prevention (CDC) for children
and the Bushby et al charts for adults (Bushby et al, 1992).

DNA cloning and mutagenesis

pCMV5 HA USP27X WT (MRC-PPU Reagents and Services DU36356)
was generated by introducing the USP27X sequence (amplified by
RT–PCR from human testis) in BamHI/NotI sites in pCMV5 HA1. HA-
tagged USP27X point mutants were generated using the QuikChange
II XL Site Directed Mutagenesis Kit (Agilent) or PCR and In-Fusion
cloning (Takara Bio). HA USP27X C87A was generated at MRC-PPU
Reagents and Services (DU36374). Mutagenized HA-tagged USP27X
DNAs were then subcloned to pCAGGS puro (DU49023; MRC-PPU
Reagents and Services) in an XhoI site or to pGEX6P1 (Cytiva) in a
BamHI site via PCR and In-Fusion cloning. pCAGGS puro 3X FLAG
ATXN7L3 was cloned by PCR and In-Fusion using pcDNA3.1+/C-(k)-
ATXN7L3-DYK (Genscript OHu31133D Accession No: NM_020218.1) as
a template to be cloned in a BamHI site in pCAGGS puro 3X FLAG
(DU49056; MRC-PPU Reagents and Services). All constructs were
confirmed using DNA sequencing.

Protein expression and purification

pGEX6P1 USP2 and USP27X plasmids were transformed into BL21-
CodonPlus (DE3)-RIPL or (New England Biolabs) Rosetta 2(DE3)
Competent Cells (Novagen) via heat shock. Transformed colonies
were grown in Terrific Broth media (GeneSee Scientific) containing
100 μg/ml ampicillin and 25 μg/ml chloramphenicol if required, at
37°C and 200g in a MaxQ 4000 Benchtop Orbital Shaker (Thermo
Fisher Scientific) up to OD600 = 0.5–0.6. Cultures were supple-
mented with 0.05 mM IPTG, then cooled down to 16°C, and incu-
bated at 16°C and 200g for 20 h. Bacterial pellets were obtained by
centrifugation for 20 min at 4°C at 3,020g and frozen overnight.
Pellets were resuspended in MS500 lysis buffer (20 mM Tris pH 7.5,
300 mM NaCl, 0.5 mM TCEP, Lysozyme, and cOmplete Protease
Inhibitor Cocktail Tablets [MilliporeSigma]). Bacterial lysates were
sonicated in an analog Sonifier sonicator (Branson, Duty Cycle: 50,
Output: 3, 2 min) and then centrifuged at 24,610g at 4°C for 30 min.
Cleared supernatants were transferred to columns containing glu-
tathione agarose (Thermo Fisher Scientific) and passed through the
column twice by gravity flow. Glutathione agarose-bound proteins
were then washed three times with one resin volume of MS500 buffer
(20 mM Tris pH 7.5, 500 mM NaCl, 0.5 mM TCEP). GST-tagged proteins
were recovered by addition of elution buffer (MS500 buffer sup-
plemented with 10 mM glutathione and 10 mM NaOH). Eluates were
precipitated by addition of two volumes of 4M ammonium sulfate
andmixing, followed by two centrifugation steps of 24,610g at 4°C for
30 and 5 min, and stored at −80°C. Protein pellets were resuspended

in storage buffer (MS500 supplemented with 25% glycerol). Protein
concentrations were measured using a NanoDrop spectrophotom-
eter (Thermo Fisher Scientific), and protein quality and purity were
analyzed via SDS–PAGE and Coomassie blue staining.

Cell culture, transfection, and inhibitor treatments

Usp27x−/y J1 mouse ESCs (Atanassov et al, 2016) were cultured in ES
media (DMEM containing 10% FBS [vol/vol], 5% knockout serum
replacement [vol/vol], 2 mM glutamine, 0.1 mM minimum essential
media nonessential amino acids, 1 mM sodium pyruvate, penicillin,
and streptomycin; 0.1 mM b-mercaptoethanol; and 100 g/ml LIF).
Cells were grown in 0.1% gelatin (vol/vol) coated plates at 37°C and
5% CO2. Plasmid transfections were performed using Lipofectamine
LTX (Thermo Fisher Scientific) according to the manufacturer’s
instructions. 2–8 × 104 cells/cm2 were combined with plasmid DNA
and transfection reagents while in suspension and seeded in
gelatin-coated plates for 48 h before analysis. For protein stability
assays, cells were treated with 350 μM cycloheximide (MilliporeSigma–
resuspended in DMSO).

Immunoblotting

Cells were lysed in IP-MS buffer (20 mM Tris [pH 7.4], 150 mM NaCl,
1 mM EDTA, 1% Nonidet P-40 [NP-40] [vol/vol], 0.5% sodium
deoxycholate [wt/vol], 10 mM b-glycerophosphate, 10 mM sodium
pyrophosphate, 1 mM NaF, 2 mM Na3VO4, and cOmplete protease
inhibitor cocktail tablets [MilliporeSigma]). Samples were cleared
by centrifugation and protein concentration determined via the
BCA assay (Thermo Fisher Scientific). 20–30 μg of protein were
loaded in SDS–PAGE gels and transferred to PVDF or Nitrocellulose
membranes. These were then blocked with TBS-Tween 20 (TBS-T)
5% nonfat milk (wt/vol) and incubated with primary antibodies. HRP
or infrared dye-conjugated secondary antibodies were used for
electrochemiluminescence or infrared detection using a ChemiDoc
MP (Bio-Rad) or an Odyssey instrument (LI-COR). Figures were
assembled using Image Lab (Bio-Rad), Image Studio (LI-COR),
Inkscape 1.2 (Inkscape), and Illustrator (Adobe). Densitometric
analyses were performed using ImageJ (NIH) or Image Studio (LI-
COR) and data were analyzed in Excel (Microsoft) and GraphPad
Prism 9 (GraphPad).

Immunofluorescence

Cells were plated on 0.1% gelatin (wt/vol) coated glass coverslips
and fixed using 4% paraformaldehyde (wt/vol) in PBS. Fixed cells
were permeabilized with 0.5% Triton X-100 (vol/vol) in PBS and
blocked with coverslip block buffer (4% Fish gelatin [wt/vol], 5.0%
goat serum [vol/vol], and 1.2% BSA [wt/vol] in PBS). Cells were then
incubated with an anti HA-tag antibody (1:10,000; BioLegend) fol-
lowed by an Alexa 488-conjugated anti-mouse secondary antibody
(1:500; Thermo Fisher Scientific) diluted in coverslip block buffer in a
humid chamber. Actin red 555 reagent (Thermo Fisher Scientific)
was added to the secondary antibody mix to stain actin. DNA was
stained using Hoechst. Cells were mounted on glass slides using
FluorSave (MilliporeSigma). Z-stack confocal images were acquired
with a Nikon A1R confocal microscope using the NIS-Elements
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software. Maximum intensity z-projections were generated using
Image J (NIH) and images were assembled using Photoshop and
Illustrator (Adobe). Quantification of the nuclear versus total HA-
USP27X signal was performed using the adjust threshold and an-
alyze particles tools of Image J (NIH).

Co-immunoprecipitation

For co-immunoprecipitation assays, anti-HA Affinity Resin (Abcam)
was washed with IPMS buffer and then blocked with 5% BSA (wt/
vol) IPMS buffer for 1 h at 4°C. 0.3–0.5 mg of protein lysate was
incubated overnight with 10 μl of blocked resin in a 500 μl total
volume in a rotating wheel. Resin-bound immunoprecipitates were
then separated by centrifugation and washed with IPMS buffer
supplemented with 500 mM NaCl. Resin–protein complexes were
then resuspended in 50% SDS–PAGE loading buffer (vol/vol) IPMS
and boiled at 95°C for 5min. Samples were loaded in SDS–PAGE gels
and analyzed by immunoblotting as described above. ATXN7L3
interaction was displayed as the ratio between immunoprecipi-
tated FLAG-ATXN7L3 and immunoprecipitated HA-USP27X. Data
were normalized to the WT control.

Protein sequence analysis and structure modelling

Protein alignments were performed using Clustal Ω (EMBL-EBI) and
graphical representation was generated using ESPript (Robert &
Gouet, 2014).

The predicted structure of human USP27X alone, USP22, and
USP51 (UniProt accession: A6NNY8, Q9UPT9, and Q70EK9, respec-
tively) were obtained from the AlphaFold Protein Structural
Database (Jumper et al, 2021). Three structures of USP27X with
ubiquitin were computed with AlphaFold-multimer (Evans et al,
2022 Preprint) using ColabFold (Mirdita et al, 2022) without tem-
plates and with amber relaxation and three recycles. ChimeraX
(Pettersen et al, 2021) was used to prepare the figures.

The solvent accessible surface area of each residue of interest
was normalized by the maximum allowed solvent accessibility for
that residue type to give the relative solvent accessibility. The
maximum allowed solvent accessibility for each residue type was
obtained from theoretical estimates as determined in Tien et al,
2013 and the accessible surface area for each residue in each
AlphaFold model was calculated using DSSP (Kabsch & Sander,
1983).

In vitro activity assays

Thermal stability of recombinant proteins was estimated using
thermal shift assays. 5 μM WT or mutant USP27X were incubated in
DUB activation buffer (50 mM Tris–HCl pH 7.5, 50 mM NaCl, and
10 mM TCEP) with 5X SYPRO Orange (Thermo Fisher Scientific) in
25 μl reactions in a 96-well plate (Bio-Rad). After a 10-min incu-
bation at RT, plates were transferred to a CFX96 real-time PCR
system (Bio-Rad) and incubated at increasing temperatures from
10°C to 95°C in increments of 0.5°C for 10 s. Fluorescence emitted
over time was measured (melt curve graph), andmelt temperatures
were estimated from the first derivative of fluorescence emission
with respect to temperature (melt peak graph).

For di-ubiquitin cleavage assays, 2 μMWT or mutant USP27X were
incubated in DUB activation buffer for 10 min at RT and mixed with
376 ng of K48 or K63 di-ubiquitin chains (South Bay Bio) for 1 h at
30°C. Reactions were stopped by adding SDS–PAGE loading buffer
and samples analyzed via SDS–PAGE and immunoblotting. Di-
ubiquitin cleavage was displayed as the levels of mono-ubiquitin
in solution after the reaction. Data were normalized to the WT
control.

For activity-based probe assays, 2 μM GST-USP2 or USP27X (WT or
mutant) were incubated with 2 μM HA–ubiquitin–propargylmide
(HA-Ub-PRG; South Bay Bio) in DUB activation buffer in a 10 μl
reaction for 1 h at 30°C and 1,000g shaking in a Thermomixer F1.5
(Eppendorf). To inhibit DUB activity, PR-619 (Apex Bio) or DMSO
(vehicle) was added to the reaction. Reactions were stopped by
adding SDS–PAGE loading buffer and samples analyzed via SDS–
PAGE and immunoblotting. Ub-PRG probe-labelling levels were
displayed as the ratio between HA-Ub-PRG signal above USP27X
and the total GST-USP27X signal. Data were normalized to the WT
control.

Data Availability

The ClinVar accession numbers for the DNA variant data are
SCV003918884.1-SCV003918891.1. Reagents used or generated in this
work listed in Table S4, materials, and raw data are available upon
reasonable request from the corresponding authors. Plasmids
generated by MRC-PPU Reagents and Services are available at
http://mrcppureagents.dundee.ac.uk/.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302258.
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