298 research outputs found

    Medial knee joint loading during stair ambulation and walking while carrying loads

    Get PDF
    Carrying loads while walking or using stairs is a common activity of daily living. Knee osteoarthritis is associated with increased external knee adduction moment (KAM) during walking, so understanding how the additional challenges of stairs and carrying loads impact these moments is of value. Sixteen healthy individuals performed three types of MOTION (walking, stair ascent, stair descent) under three LOAD conditions (no load, carrying a 13.6 kg front load, carrying 13.6 kg load in a backpack). Three-dimensional gait analysis was used to measure KAM. Results of ANOVA showed a significant main effect of both MOTION and LOAD on peak KAM (p \u3c 0.001), but no significant MOTION × LOAD interaction (p = 0.250). Peak KAM during stair ascent was about two-times those seen in stair descent (p \u3c 0.001) and was significantly higher than those seen in walking (p \u3c 0.001). Conditions with LOAD generated significantly greater KAM as compared to the no-LOAD conditions (p \u3c 0.001). These findings suggest that carrying a load of moderate magnitude while climbing stairs significantly increases the peak KAM – a risk factor associated with knee osteoarthritis

    ERK1/2 signaling induces skeletal muscle slow fiber-type switching and reduces muscular dystrophy disease severity

    Get PDF
    © 2019 American Society for Clinical Investigation. MAPK signaling consists of an array of successively acting kinases. ERK1 and -2 (ERK1/2) are major components of the greater MAPK cascade that transduce growth factor signaling at the cell membrane. Here, we investigated ERK1/2 signaling in skeletal muscle homeostasis and disease. Using mouse genetics, we observed that the muscle-specifc expression of a constitutively active MEK1 mutant promotes greater ERK1/2 signaling that mediates fber-type switching to a slow, oxidative phenotype with type I myosin heavy chain expression. Using a conditional and temporally regulated Cre strategy, as well as Mapk1 (ERK2) and Mapk3 (ERK1) genetically targeted mice, MEK1-ERK2 signaling was shown to underlie this fast-to-slow fber-type switching in adult skeletal muscle as well as during development. Physiologic assessment of these activated MEK1-ERK1/2 mice showed enhanced metabolic activity and oxygen consumption with greater muscle fatigue resistance. In addition, induction of MEK1-ERK1/2 signaling increased dystrophin and utrophin protein expression in a mouse model of limb-girdle muscle dystrophy and protected myofbers from damage. In summary, sustained MEK1-ERK1/2 activity in skeletal muscle produces a fast-to-slow fber-type switch that protects from muscular dystrophy, suggesting a therapeutic approach to enhance the metabolic effectiveness of muscle and protect from dystrophic disease

    IFI35, mir-99a and HCV Genotype to Predict Sustained Virological Response to Pegylated-Interferon Plus Ribavirin in Chronic Hepatitis C

    Get PDF
    International audienceAlthough, the treatment of chronic hepatitis C (CHC) greatly improved with the use of direct antiviral agents, pegylated-interferon (PEG-IFN) plus ribavirin remains an option for many patients, worldwide. The intra-hepatic level of expression of interferon stimulated genes (ISGs) and the rs12979860 CC genotype located within IFNL3 have been associated with sustained virological response (SVR), in patients with CHC. The aim of the study was to identify micro-RNAs associated with SVR and to build an accurate signature to predict SVR. Pre-treatment liver biopsies from 111 patients, treated with PEG-IFN plus ribavirin, were studied. Fifty-seven patients had SVR, 36 non-response (NR) and 18 relapse (RR). The expression of 851 human miRNAs and 30 selected mRNAs, including ISGs, was assessed by RT-qPCR. In the first group of patients (screen), 20 miRNAs out of the 851 studied were deregulated between NRs and SVRs. From the 4 miRNAs validated (mir-23a, mir-181a*, mir-217 and mir-99a), in the second group of patients (validation), 3 (mir-23a, mir-181a* and mir-99a) were down-regulated in NRs as compared to SVRs. The ISGs, studied, were accumulated in SVRs and IFNL3 rs12979860 CT/TT carriers compared respectively to NRs and CC carriers. Combining, clinical data together with the expression of selected genes and micro-RNAs, we identified a signature (IFI35, mir-99a and HCV genotype) to predict SVR (AUC:0.876) with a positive predictive value of 86.54% with high sensibility (80%) and specificity (80.4%). This signature may help to characterize patients with low chance to respond to PEG-IFN/ribavirin and to elucidate mechanisms of NR

    Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart

    Get PDF
    © 2018 Academic Press. All rights reserved. Fibroblasts are a dynamic cell type that achieve selective differentiated states to mediate acute wound healing and long-term tissue remodeling with scarring. With myocardial infarction injury, cardiomyocytes are replaced by secreted extracellular matrix proteins produced by proliferating and differentiating fibroblasts. Here, we employed 3 different mouse lineage-tracing models and stage-specific gene profiling to phenotypically analyze and classify resident cardiac fibroblast dynamics during myocardial infarction injury and stable scar formation. Fibroblasts were activated and highly proliferative, reaching a maximum rate within 2 to 4 days after infarction injury, at which point they expanded 3.5-fold and were maintained long term. By 3 to 7 days, these cells differentiated into myofibroblasts that secreted abundant extracellular matrix proteins and expressed smooth muscle α-actin to structurally support the necrotic area. By 7 to 10 days, myofibroblasts lost proliferative ability and smooth muscle α-actin expression as the collagen-containing extracellular matrix and scar fully matured. However, these same lineage-traced initial fibroblasts persisted within the scar, achieving a new molecular and stable differentiated state referred to as a matrifibrocyte, which was also observed in the scars of human hearts. These cells express common and unique extracellular matrix and tendon genes that are more specialized to support the mature scar

    Mutational analysis of the PLCE1 gene in steroid-resistant nephrotic syndrome

    Get PDF
    International audienceBackground: Mutations in the PLCE1 gene encoding phospholipase C epsilon 1 (PLCε1) have been recently described in patients with early-onset nephrotic syndrome (NS) and diffuse mesangial sclerosis (DMS). In addition, two cases of PLCE1 mutations associated with focal segmental glomerulosclerosis (FSGS) and later NS onset have been reported. Methods: In order to better assess the spectrum of phenotypes associated with PLCE1 mutations, we performed mutational analysis in a worldwide cohort of 139 patients (95 familial cases belonging to 68 families and 44 sporadic cases) with steroid-resistant NS presenting at a median age of 23.0 months (range 0-373). Results: We identified homozygous or compound heterozygous mutations in 33% (8/24) of DMS cases. PLCE1 mutations were found in 8% (6/78) of FSGS cases without NPHS2 mutations. Nine were novel mutations. No clear genotype-phenotype correlation was observed, with either truncating or missense mutations detected in both DMS and FSGS, and leading to a similar renal evolution. Surprisingly, 3 unaffected and unrelated individuals were also found to carry the homozygous mutations identified in their respective families. Conclusion: PLCE1 is a major gene of DMS and is mutated in a non-negligible proportion of FSGS cases without NPHS2 mutations. Although we did not identify additional variants in 19 candidate genes (16 other PLC genes, BRAF, IQGAP1 and NPHS1), we speculate that other modifier genes or environmental factors may play a role in the renal phenotype variability observed in individuals bearing PLCE1 mutations. This observation needs to be considered in the genetic counselling offered to patients

    Factors Associated with Opioid Overdose after an Initial Opioid Prescription

    Get PDF
    Importance: The opioid epidemic continues to be a public health crisis in the US. Objective: To assess the patient factors and early time-varying prescription-related factors associated with opioid-related fatal or nonfatal overdose. Design, Setting, and Participants: This cohort study evaluated opioid-naive adult patients in Oregon using data from the Oregon Comprehensive Opioid Risk Registry, which links all payer claims data to other health data sets in the state of Oregon. The observational, population-based sample filled a first (index) opioid prescription in 2015 and was followed up until December 31, 2018. Data analyses were performed from March 1, 2020, to June 15, 2021. Exposures: Overdose after the index opioid prescription. Main Outcomes and Measures: The outcome was an overdose event. The sample was followed up to identify fatal or nonfatal opioid overdoses. Patient and prescription characteristics were identified. Prescription characteristics in the first 6 months after the index prescription were modeled as cumulative, time-dependent measures that were updated monthly through the sixth month of follow-up. A time-dependent Cox proportional hazards regression model was used to assess patient and prescription characteristics that were associated with an increased risk for overdose events. Results: The cohort comprised 236921 patients (133 839 women [56.5%]), of whom 667 (0.3%) experienced opioid overdose. Risk of overdose was highest among individuals 75 years or older (adjusted hazard ratio [aHR], 3.22; 95% CI, 1.94-5.36) compared with those aged 35 to 44 years; men (aHR, 1.29; 95% CI, 1.10-1.51); those who were dually eligible for Medicaid and Medicare Advantage (aHR, 4.37; 95% CI, 3.09-6.18), had Medicaid (aHR, 3.77; 95% CI, 2.97-4.80), or had Medicare Advantage (aHR, 2.18; 95% CI, 1.44-3.31) compared with those with commercial insurance; those with comorbid substance use disorder (aHR, 2.74; 95% CI, 2.15-3.50), with depression (aHR, 1.26; 95% CI, 1.03-1.55), or with 1 to 2 comorbidities (aHR, 1.32; 95% CI, 1.08-1.62) or 3 or more comorbidities (aHR, 1.90; 95% CI, 1.42-2.53) compared with none. Patients were at an increased overdose risk if they filled oxycodone (aHR, 1.70; 95% CI, 1.04-2.77) or tramadol (aHR, 2.80; 95% CI, 1.34-5.84) compared with codeine; used benzodiazepines (aHR, 1.06; 95% CI, 1.01-1.11); used concurrent opioids and benzodiazepines (aHR, 2.11; 95% CI, 1.70-2.62); or filled opioids from 3 or more pharmacies over 6 months (aHR, 1.38; 95% CI, 1.09-1.75). Conclusions and Relevance: This cohort study used a comprehensive data set to identify patient and prescription-related risk factors that were associated with opioid overdose. These findings may guide opioid counseling and monitoring, the development of clinical decision-making tools, and opioid prevention and treatment resources for individuals who are at greatest risk for opioid overdose

    Deconvoluting kinase inhibitor induced cardiotoxicity

    Get PDF
    Many drugs designed to inhibit kinases have their clinical utility limited by cardiotoxicity-related label warnings or prescribing restrictions. While this liability is widely recognized, designing safer kinase inhibitors (KI) requires knowledge of the causative kinase(s). Efforts to unravel the kinases have encountered pharmacology with nearly prohibitive complexity. At therapeutically relevant concentrations, KIs show promiscuity distributed across the kinome. Here, to overcome this complexity, 65 KIs with known kinome-scale polypharmacology profiles were assessed for effects on cardiomyocyte (CM) beating. Changes in human iPSC-CM beat rate and amplitude were measured using label-free cellular impedance. Correlations between beat effects and kinase inhibition profiles were mined by computation analysis (Matthews Correlation Coefficient) to identify associated kinases. Thirty kinases met criteria of having (1) pharmacological inhibition correlated with CM beat changes, (2) expression in both human-induced pluripotent stem cell-derived cardiomyocytes and adult heart tissue, and (3) effects on CM beating following single gene knockdown. A subset of these 30 kinases were selected for mechanistic follow up. Examples of kinases regulating processes spanning the excitation–contraction cascade were identified, including calcium flux (RPS6KA3, IKBKE) and action potential duration (MAP4K2). Finally, a simple model was created to predict functional cardiotoxicity whereby inactivity at three sentinel kinases (RPS6KB1, FAK, STK35) showed exceptional accuracy in vitro and translated to clinical KI safety data. For drug discovery, identifying causative kinases and introducing a predictive model should transform the ability to design safer KI medicines. For cardiovascular biology, discovering kinases previously unrecognized as influencing cardiovascular biology should stimulate investigation of underappreciated signaling pathways

    The Grizzly, February 22, 1994

    Get PDF
    Breaking Down the Barriers: One Man\u27s Struggle with Homosexuality, Stereotypes and the Military • Maintenance Man, Humanitarian • Pledging Private Eyes • Pledging Underway Once Again • Olympic Update • Are There Really any Losers in the Olympics? • Ursinus Students Raise Money for a Friend in Need • And When the Sawdust Cleared...It Was a Masterpiece • Come out and Support a U.C. Senior • Restaurant Night Revisited • Senior Spotlight: Joshua Donald Carter • Clinton: King of Astro Turf • Learn by Listening to Yourself • Sports Picture Page: The Two Hottest Teams Around • Baseball Preview \u2794 • Lady Bears are Eastern Division Champshttps://digitalcommons.ursinus.edu/grizzlynews/1331/thumbnail.jp
    • …
    corecore