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ABSTRACT 

Background: Mutations in the PLCE1 gene encoding phospholipase C epsilon 1 (PLCε1) 

have been recently described in patients with early-onset nephrotic syndrome (NS) and 

diffuse mesangial sclerosis (DMS).  In addition, two cases of PLCE1 mutations associated 

with focal segmental glomerulosclerosis (FSGS) and later NS onset have been reported. 

Methods: In order to better assess the spectrum of phenotypes associated with PLCE1 

mutations, we performed mutational analysis in a worldwide cohort of 139 patients (95 

familial cases belonging to 68 families and 44 sporadic cases) with steroid-resistant NS 

presenting at a median age of 23.0 months (range 0-373). 

Results: We identified homozygous or compound heterozygous mutations in 33% (8/24) of 

DMS cases.  PLCE1 mutations were found in 8% (6/78) of FSGS cases without NPHS2 

mutations.  Nine were novel mutations.  No clear genotype-phenotype correlation was 

observed, with either truncating or missense mutations detected in both DMS and FSGS, and 

leading to a similar renal evolution.  Surprisingly, 3 unaffected and unrelated individuals were 

also found to carry the homozygous mutations identified in their respective families.  

Conclusion: PLCE1 is a major gene of DMS and is mutated in a non-negligible proportion of 

FSGS cases without NPHS2 mutations.  Although we did not identify additional variants in 

19 candidate genes (16 other PLC genes, BRAF, IQGAP1 and NPHS1), we speculate that 

other modifier genes or environmental factors may play a role in the renal phenotype 

variability observed in individuals bearing PLCE1 mutations.  This observation needs to be 

considered in the genetic counselling offered to patients. 

 

 

KEY WORDS: PLCE1, nephrotic syndrome, diffuse mesangial sclerosis, focal segmental 

glomerulosclerosis, hereditary glomerular disease 
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INTRODUCTION 

Nephrotic syndrome (NS) results from disruption of the renal filtration barrier composed of 

interdigitating podocyte foot processes linked by the slit diaphragm, and endothelial cells 

separated from podocytes by the glomerular basement membrane.  It is characterized by 

massive proteinuria, hypoalbuminemia, hyperlipidemia, edema and podocyte foot process 

effacement by electron microscopy.  NS is classified as steroid-sensitive (SSNS) or steroid-

resistant (SRNS) and mutations in several genes, mostly coding for podocyte proteins, have 

been identified as causing SRNS in humans.  Although kidney biopsy discloses focal and 

segmental glomerulosclerosis (FSGS) lesions for most patients with SRNS,1 a smaller 

proportion of children may present a particularly severe renal histological pattern named 

diffuse mesangial sclerosis (DMS) with an early presentation and a poor renal prognosis.  

DMS is characterized by mesangial expansion and sclerosis that evolves toward obliteration 

of the capillary lumen and contraction of the glomerular tuft.  This type of renal histology has 

been described as part of syndromes such as Denys-Drash syndrome or Pierson syndrome, 

caused by mutations in the WT1 and LAMB2 genes, respectively.  More recently, PLCE1 

mutations have been found as a novel cause of DMS.2  Involvement of the PLCE1 gene 

(MIM*608414) in NS has been found using a combination of homozygosity mapping and 

cDNA microarrays from rat glomeruli.  In the original series described by Hinkes et al.,2 

truncating PLCE1 mutations were identified in 12 siblings from six families diagnosed with 

early-onset NS and DMS while a homozygous missense mutation was identified in two 

siblings with a later onset of disease and FSGS (Nephrotic syndrome, type 3; NPHS3 - 

MIM#610725); until now, these individuals were the only reported cases of FSGS secondary 

to PLCE1 mutations.  Subsequently, mutations in PLCE1 have been demonstrated as a major 

cause of isolated DMS, identified in 28.6% of 35 families in a worldwide cohort.3  Although 

PLCE1 mutations typically lead to a severe phenotype, full and sustained treatment responses 
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have been reported in two individuals with truncating mutations2 and a pathogenic 

homozygous mutation have also been found in a phenotypically completely normal adult.4  

This suggests that other factors may modify the effect of PLCE1 mutations.  

 

PLCE1 gene encodes the phospholipase C epsilon 1 (PLCε1).  Members of the 

phosphoinositide-specific phospholipase C (PLC) family catalyze the hydrolysis of membrane 

phospholipids to generate the second messenger molecules inositol 1,4,5-trisphosphate (IP3) 

and diacylglycerol (DAG) that initiate intracellular pathways of cell growth and 

differentiation.5  Several distinct PLC enzymes have been identified in a variety of 

mammalian tissues and are divided into four classes: PLCβ, PLCγ, PLCδ and PLCε. 

Phospholipase catalytic domains (PLC_X and PLC_Y) and Ca2+ lipid-binding domain (C2 

domain) typically characterized all PLCs. PLCε1, which is highly expressed in podocytes,2 is 

the most recently identified member of the PLC family; it contains, in addition to conserved 

PLC domains, a RasGEF_CDC25 (guanine nucleotide exchange factor for Ras-like small 

GTPases domain) and two C-terminal Ras-binding (RA) domains, RA1 and RA2 (RasGTP 

binding domain from guanine nucleotide exchange factors).  While PLCβ, PLCγ, PLCδ are 

differentially regulated by heterotrimeric G-proteins, tyrosine kinases and calcium, it has been 

shown that PLCε1 is regulated by H-Ras (via RA1 and RA2 domains) and also interacts with 

IQGAP1 (IQ motif-containing GTPase-activating protein) and BRAF.2 5-7 

 

In order to better define the phenotype spectrum of patients bearing PLCE1 mutations, we 

performed mutational analysis and clinical follow-up of a large worldwide cohort of patients 

with either familial or sporadic SRNS.  In addition, we aimed to determine the role of 

candidate genes, including other PLC genes, as modifiers of disease in families for which 

both symptomatic and asymptomatic members had homozygous PLCE1 mutations. 
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MATERIALS AND METHODS 

Patients 

A total of 139 patients were included in the present study, all of which presented SRNS.  In 

accordance with criteria established by the International Study of Kidney Disease in Children 

(ISKDC), NS was defined as the association of proteinuria > 40 mg/m2/hr, hypoalbuminemia 

< 2.5 g/dL, edema, and hyperlipidemia.1  Steroid- resistance was defined as lack of response 

to four weeks of treatment with 60mg/m2 per day of prednisone.8  None of the included 

patients presented relapse after transplantation, if performed.  Ninety-five patients, belonging 

to 68 families (53 consanguineous families, 15 non-consanguineous multiplex families), were 

classified as familial cases, defined as the presence of one (or more) affected individual(s) in 

consanguineous families and two or more affected children in non-consanguineous families.  

Forty-four patients presented with sporadic SRNS. Mutations in NPHS2, encoding podocin, 

were excluded for all patients.  Mutations of the exons 8 and 9 of the WT1 gene, encoding the 

Wilm’s tumor 1 protein, were excluded in all phenotypically female patients.  Mutations in 

NPHS1, encoding nephrin, were excluded in children which presented NS at less than one 

year of age without DMS on kidney histology.  Clinical data, including ethnic origin, type of 

renal histological lesions and age at onset of NS and ESKD, were recorded.  Informed consent 

was obtained for all participating families and the study was approved by the Comité de 

Protection des Personnes «Ile de France II».  

 

PLCE1  molecular analyses 

Genomic DNA specimens were collected with informed consent and isolated from peripheral 

blood using standard procedures. Linkage of familial cases to the PLCE1 locus was assessed 
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using four polymorphic microsatellite markers spanning 5.5 Mb and flanking the locus 

(D10S185, D10S1680, D10S574, D10S1726).  When results were compatible with linkage to 

PLCE1 locus, and for all sporadic cases, the complete coding sequence and exon-intron 

boundaries of PLCE1 gene were amplified by PCR (33 exons, GenBank accession number 

NM_016341.3); subsequently, both strands were sequenced using a Big Dye terminator cycle 

sequencing kit and analyzed with an ABI Prism 3730xl DNA analyzer (Applied Biosystems, 

Foster City, CA, USA).  PCR and sequencing primers are available upon request.  Sequence 

chromatograms were analysed using the Sequencher
® 

software (Gene Codes Corporation, 

Ann Arbor, MI, USA).  Segregation analysis of mutations in families was performed by direct 

DNA sequencing.  Prediction of the functional impact of missense PLCE1 variants was 

obtained with the PolyPhen software (http://genetics.bwh.harvard.edu/pph/).  The absence of 

these mutations among at least 50 normal individuals was confirmed.  Mutational data were 

described using the nomenclature of the Human Genome Variation Society 

(www.hgvs.org/mutnomen).  Positions of mutations were numbered with the A of the ATG-

translation initiation codon in the reference cDNA sequence being 1.  

 

Mutational analyses of possible modifier genes, including other phospholipases C 

In order to identify modifier genes in families with asymptomatic individuals who carried the 

same PLCE1 homozygous mutation as the affected patients, a total of 19 candidates genes 

were evaluated, including 16 genes encoding other PLC (PLCB1, PLCB2, PLCB3, PLCB4, 

PLCD1, PLCD3, PLCD4, PLCG1, PLCG2, PLCH1, PLCH2, PLCL1, PLCL2, PLCXD1, 

PLCXD3 and PLCZ1) and 3 genes encoding proteins that interact directly or indirectly with 

PLCε1 (BRAF, IQGAP1, NPHS1) (Table 1).  Firstly, a whole-genome wide search for linkage 

was performed using a 250k SNP array (GeneChip® Human Mapping 250K Nsp Array from 

Affymetrix, Santa Clara, CA).  The potential role of one of the genes cited above as a 
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modifier of disease was excluded if the asymptomatic mutated patient shared the same 

haplotypes as at least one of the affected mutated patients.  Then, for genes not excluded by 

this method, microsatellite markers were used to test each locus of the remaining genes: 

PLCB2 (D15S994, D15S968, D15S1006), PLCB4 (D20S889, D20S115, D20S186), PLCH1 

(D3S1594, D3S1279, D3S1268), PLCL1 (D2S117, D2S311, D2S374, D2S318, D2S115), 

PLCL2 (D3S3701, D3S2338, D3S1293) and BRAF (D7S2560, D7S684, D7S2513, D7S661).  

Finally, the complete coding sequence and exon-intron boundaries of the genes not excluded 

by the whole genome wide scan or by microsatellite markers analysis were sequenced as 

described above (PLCH1, 23 exons, GenBank accession number NM_014996.2; PLCL1, 5 

exons, GenBank accession number NM_006226.3; BRAF, 18 exons, GenBank accession 

number NM_004333.4) in one asymptomatic mutated patient and one affected mutated 

patient of each families. 

 

Statistical analysis 

All values are expressed as means ± standard error or median (range).  Comparisons between 

two continuous variables were performed using the Mann-Whitney test.  All tests were two 

sided. P-values <0.05 were considered significant.  Statistical analyses were performed using 

GraphPad Prism software version 5.01.  
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RESULTS 

Patients characteristics 

Patients characteristics are summarized in Table 2.  Most of familial cases originated from 

Middle-East (33.8%) while most of sporadic cases were from Europe (66.7%) (mainly from 

France).  Among familial cases, renal histology disclosed FSGS, DMS and other renal lesions 

(mesangial proliferation, membranoproliferative glomerulonephritis and terminal kidney) in 

50, 10 and 4 families, respectively (renal biopsy not performed in 4 families).  Among 

sporadic cases, FSGS was present in 28 cases, DMS in 14 cases and mesangial proliferation 

in two cases.  Mean age at onset of NS was 46.2 ± 5.7 months. Seventy-six patients reached 

ESKD at a mean age of 79.7 ± 7.1 months. 

 

Identification of PLCE1 Mutations  

Microsatellite markers analysis excluded linkage to the PLCE1 locus in 43 families.  

Therefore, results were compatible with linkage to the PLCE1 locus in 25 families as 

evidenced by homozygosity for the polymorphic markers flanking the PLCE1 locus.  Disease-

causing mutations were found in 12 families, comprising a total of 18 patients (Table 3).  

Among sporadic cases, homozygous PLCE1 mutations were identified in 3 patients.  Most 

were homozygous truncating mutations (nonsense or frameshift mutations), although 

compound heterozygote missense mutations (p.E1386V/p.P1890L) were detected in two 

siblings and a homozygous missense mutation (p.H1407D) was detected in one sporadic case.  

The p.E1386V was predicted to be a possibly pathogenic mutation (Polyphen score 1.94) and 

involved a very highly conserved amino-acid from fishes to humans.  The p.P1890L and 

p.H1407D were predicted to be probably pathogenic mutations with a Polyphen score of 2.55 

and 2.50, respectively, involving amino-acids conserved from C-elegans to humans, and 



 9

included in either the C2 domain or the PLC_X catalytic domain of the protein.  Nine of these 

mutations have not been previously reported (Figure 1). 

 

Phenotypic Spectrum of PLCE1 Mutations 

Among the 12 families bearing PLCE1 mutations, renal biopsy disclosed FSGS in 6 and DMS 

in 5 (not performed in one family).  This translates in a 12% (6/50) and 50% (5/10) PLCE1 

detection rate among families with FSGS and DMS, respectively.  All the 3 sporadic cases 

presented DMS on renal histology, meaning that PLCE1 mutations were detected in 21% 

(3/14) of sporadic DMS cases, but in none (0/28) of the sporadic FSGS cases.  Globally, 

PLCE1 mutations were identified in 13% of our whole cohort (15/112), 33% (8/24) of DMS 

cases and 8% (6/78) of FSGS cases.  When kidney histology of several affected patients of 

the same family was available, all siblings had the same type of renal lesions. 

 

Patients with PLCE1 mutations presented NS at a mean age of 22.8 mo ± 5.0 leading to 

ESKD at a mean age of 39.1 mo ± 6.3 (two patients with FSGS did not reach ESKD after a 

short follow-up of 1 year and one patient without renal biopsy died at 11 months of NS 

complications).  This contrasts with non mutated patients which presented NS at a mean age 

of 50.9 mo ± 6.7 (p=0.12) leading to ESKD at a mean age of 92.6 mo ± 8.4 (p<0.01).  In 

patients bearing PLCE1 mutations, no clear-cut genotype-phenotype correlations were 

observed.  Truncating (mean age at onset 24.6 mo ± 5.8, mean age at ESKD 37.1 mo ± 6.7) 

and missense mutations (mean age at onset 12.3 mo ± 1.5, mean age at ESKD 49.0 mo ± 

19.9) lead to similar renal presentation and evolution (p=0.80 and p=0.41, respectively) and 

were detected in both FSGS and DMS histological forms.  However, renal prognosis was 

worst in patients with DMS compared to those with FSGS (mean age at onset of NS 15.3 mo 
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± 6.0 vs 30.5 mo ± 7.7,  p=0.15 and mean age at ESKD 20.9 mo ± 5.8 vs 57.2 mo ± 7.3, 

p<0.01).  

 

Identification of asymptomatic individuals bearing homozygous PLCE1 mutations 

Surprisingly, segregation analysis revealed that 3 unaffected individuals belonging to 3 

unrelated families were also found to bear, in the homozygous state, the mutations identified 

in their respective affected relatives (Figure 2).  In family E, 3 out of six siblings of a 

consanguineous family from Pakistan presented SRNS with FSGS on renal histology at ~ 5 

years of age and reached ESKD by the age of 6.  Another brother had a past history of 

intermittent mild proteinuria but was free of renal manifestations at 12 years of age.  The 

p.F839fs889X mutation was identified in these 4 patients.  In family O, the index case was 

born from consanguineous parents of Turkish origin.  She was diagnosed with SRNS and 

DMS at the age of 11 months and found to bear the p.R2150X mutation.  Among his 2 

siblings, 1 brother was homozygous for the mutation and had no proteinuria at 10 years of 

age.  In family A, 2 out of 3 children of consanguineous parents from Pakistan developed 

SRNS at 5 months and 3 years of age with FSGS on renal biopsy and reached ESKD when 

they were 1.4 and 4 years old, respectively.  The p.R321X mutation was identified.  

Segregation analysis revealed that the father, who was also born from consanguineous 

parents, was homozygous for the mutation.  Although he had presented hypertension and mild 

proteinuria as a teenager, his renal evaluation, at 46 years of age, was normal. 

 

Search for modifier genes  

To understand this phenomenon, we ought to identify mutations or variants in other genes that 

could modulate the clinical phenotype.  We hypothesized a protective effect arising from 

other members of the phospholipase C family in the asymptomatic individuals.  Alternatively, 
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another hypothesis was that additional mutations or variants in BRAF, IQGAP1 or NPHS1 

genes in symptomatic patients could explain the phenotypic difference.  Analysis of whole 

genome DNA arrays in family E excluded the role of 13 of the 19 candidate genes as a 

modifier of the disease, since the asymptomatic mutated individual shared the same 

haplotypes as at least one of his affected siblings at these loci.  Then, microsatellite markers 

analysis of the remaining genes (PLCB2, PLCB4, PLCH1, PLCL1, PLCL2 and BRAF) in 

family O showed that both the affected and the clinically unaffected case shared the same 

haplotypes for PLCB2, PLCB4 and PLCL2 genes, excluding them as being potentially 

involved in the phenotypic variability in the family.  Therefore, the direct DNA sequencing of 

the 3 remaining genes was performed in one affected case and one asymptomatic case of 

family E, O and A, but did not allow identification of mutations or variants. 

 

DISCUSSION 

In 2006, positional cloning uncovered mutations in PLCE1 causing early-onset NS.  Since 

then, 17 different mutations have been reported (Figure 1), among which only one was 

associated with FSGS.  We therefore aimed to better assess the phenotype spectrum of 

patients bearing PLCE1 mutations in a large worldwide cohort of patients with SRNS. 

 

Among familial forms of SRNS, PLCE1 mutations were found in 12% of families with FSGS 

and half of families with DMS.  Although a significant proportion (21%) of the DMS 

sporadic cases had PLCE1 mutations, none of the 28 sporadic cases with FSGS had mutations 

in this gene.  If we had included all children with SRNS without any prior genetic testing, the 

detection rate of PLCE1 mutations in FSGS cases would have been lower, as NPHS2 

mutations would have been identified for a significant proportion of them.  In contrast, the 

high rate of PLCE1 mutations found in DMS cases in our study is probably not overestimated 
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and is concordant with what has been previously published.3  Indeed, in our cohort, none of 

the patients presented signs of Denys-Drash or Frasier syndrome, which could have suggested 

a mutation in other DMS-associated genes such as WT1 or LAMB2.  In addition, WT1 

mutations were excluded in all phenotypically female patients and NPHS2 mutations have 

never been found as a cause of DMS.9  Similar to previous studies,2-4 10 mutated individuals 

presented with relatively early NS (from 3 months to 6 years of age) leading to ESKD before 

the age of 7 years.  In addition, Gbadegesin et al. did not identify PLCE1 mutation in a cohort 

of 231 affected individuals with FSGS and later onset of NS (mean 26 years, range 1-66) 

originated from 69 unrelated families (10 were sporadic cases).11  This confirms that PLCE1 

is a major gene of DMS and that all subjects with this type of histological lesions should be 

screened for mutations in this gene.  On the other hand, PLCE1 mutations seem to account for 

a small, although not negligible, proportion of FSGS cases for which NPHS2 mutations have 

been ruled out.  Considering that the mean age of FSGS patients with PLCE1 mutations in our 

cohort was ~ 2.5 years, PLCE1 genetic testing should probably be performed only in those 

with an early presentation, particularly if they are considered as familial cases. 

 

Among the initial cohort reported by Hinkes et al.,2 all patients with homozygous truncating 

PLCE1 mutations had DMS as opposed to two patients with missense mutations who 

exhibited FSGS with a later onset of NS.  In a follow-up study, this group reported 10 

truncating but no missense PLCE1 mutations in a cohort of 35 families with DMS.3  In 

contrast, we observed either truncating or missense mutations in both FSGS and DMS 

patients and no clear phenotype-genotype correlation.  For example, the p.R1246X mutation 

was found in the homozygous state in patients with FSGS (families H and I) or DMS (patients 

J and K), with age at NS onset varying between 6 months and 5 years.  In addition, in the 

present study, missense mutations did not lead to a milder course of disease; however, 
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missense mutations were identified in only few cases, thereby precluding a definite 

conclusion.  Nevertheless, our data showed the clinical heterogeneity associated with 

mutations in the PLCE1 gene. 

In this regards, we identified three unaffected individuals carrying the same homozygous 

mutation as their affected relatives, a finding particularly unusual for disease of recessive 

inheritance.  One other previous case report of a family of 3 affected siblings with DMS also 

showed that the asymptomatic father, who was himself born from consanguineous parents, 

had the same homozygous PLCE1 mutation as his affected children.4  These data are also 

reminiscent of the unusual progression of two patients with DMS in the original description 

of PLCE1 mutations who seemed to respond to steroid or cyclosporin therapy.2  The above 

observations raise the possibility of oligogenic inheritance, with either a third deleterious 

mutation in a second gene explaining the appearance of a renal phenotype in patients bearing 

two PLCE1 mutations or the presence of a protective modifier allele, which could compensate 

for the PLCE1 dysfunction in asymptomatic individuals.  Although oligogenic inheritance has 

been suggested in several cases of renal diseases,12-14 it is in only very rare cases that 

asymptomatic individuals presented two pathogenic mutations in one gene in contrast to 

affected individuals bearing an additional third mutation in a second gene.15  Indeed, oligenic 

inheritance has been clearly demonstrated in some cases of Bardet-Biedl syndrome (BBS), a 

genetically heterogeneous disorder characterized by pigmentary retinal dystrophy, 

polydactyly, obesity, developmental delay and renal defects. In a study of 163 BBS families, 

Katsanis et al. found the presence of "three mutant alleles" (either two BBS2 mutations and 

one BBS6 mutation or the opposite) in four pedigrees.  More interestingly, they detected two 

BBS2 mutations but not BBS6 mutations in unaffected individuals in two pedigrees, 

suggesting that BBS may not be a single-gene recessive disease but a complex trait requiring 

a total of 3 mutations in two different genes to manifest the phenotype.  On the other hand, 
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existence of protective modifier gene has been demonstrated in a recent study on autosomal 

recessive spinal muscular atrophy (SMA).16  The detection of asymptomatic individuals (all 

females) carrying the same mutations in the SMN1 (survival motor neuron 1) gene as their 

affected siblings has suggested the influence of modifier genes.  In this study, higher 

expression of plastin 3, encoded by PLS3, were found in unaffected SMN1-deleted females 

compared to their SMA-affected counterparts.  Overexpression of PLS3 rescued the axon 

length and outgrowth defect associated with down-regulation in motor neurons of SMA 

mouse embryos and in zebrafish, thereby explaining the absence of a neurological phenotype 

in some patients bearing SMN1 mutation. 

Effect of modifiers genes could also explain the absence of obvious renal phenotype in the 

Plce1 knock-out mouse model, developed on a mixed C57/B6 X 129/S6 genetic background.2 

17 Indeed, contrary to the zebrafish knock-out model in which embryos injected with Plce1 

morpholino show edema at D4 of development and foot process effacement by electron 

microscopy,2 Plce1-/- mice do not exhibit any renal phenotype.  However, as C57/B6 mice are 

resistant to the development of glomerulosclerosis,18 it might be of interest to assess the 

presence of a renal phenotype in Plce1 knock-out mice from a different genetic background or 

under nephrosis-promoting conditions. 

 

Based on the preceding observations, we ought to identify mutations or variants in other 

genes that could explain the absence of renal phenotype in some patients with PLCE1 

mutation. We first speculated a compensatory protective effect arising from other members of 

the PLC family in the unaffected individuals since the common role of these proteins is to 

initiate intracellular signaling through the generation of the second messenger molecules IP3 

and diacylglycerol. Interestingly, some mouse models of PLC genes develop a renal 

phenotype, including increased kidney weight, polycystic kidneys, renal dysplasia, 
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glomerulosclerosis or signs of glomerulonephritis (Table 1). Moreover, PLC-γ1 has been 

shown to play a key-role in the podocyte slit diaphragm. PLC-γ1 binds to phosphorylated 

nephrin, the main component of the slit, leading to PLC-γ1 activation and subsequent increase 

in IP3, and triggering of Ca2+ intracellular response.19  In our study, we did not identify a 

PLC candidate that was mutated in a recessive or dominant fashion in the affected individuals 

and not in the asymptomatic relative, or the reverse.  We then used the same approach for 

candidate genes that are known to interact directly or indirectly with PLCε1 such as IQGAP1, 

BRAF and NPHS1. IQGAP1 is a known scaffold protein of the mitogen-activated protein 

(MAP) kinase pathway20 and interacts with PLCε1,2 nephrin21 and BRAF.22  BRAF, which 

has been involved in various cancers,23 belongs to the RAF family of genes and binds H-

Ras.24  It has also been implicated in the MAP kinase pathway and is considered as a third 

interaction partner of PLCε1,7 in addition to H-ras and IQGAP-1.  In the present study, 

IQGAP1, BRAF and NPHS1 genes did not appear to explain the phenotypic variability 

observed in our patients.  However, our approach cannot exclude an effect of different PLC or 

PLC partner genes in the three different families.  Finally, it has to be stressed that, to date, 

only very few homozygous PLCE1 mutations detected in asymptomatic individuals or 

patients that responded to therapy have been reported and, surprisingly, all of them are males.  

This is reminiscent of the unaffected SMN1-deleted individuals, which were all females,16 and 

suggests the existence of gender-specific modifiers of disease. 

 

In conclusion, PLCE1 mutations are frequently found in familial and sporadic DMS cases.  

Although PLCE1 mutations had been rarely associated with FSGS, we showed that mutations 

in this gene are detected in a non-negligible proportion of familial FSGS cases without 

NPHS2 mutations.  In this study, no clear genotype-phenotype correlation was present.  

Although variants in other phospholipases C genes do not seem to explain the absence of 
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renal manifestations in some cases with PLCE1 mutations, we speculate that other modifier 

genes or environmental factors may play a role in the renal phenotype variability observed in 

individuals bearing PLCE1 mutations.  More importantly, the clinical heterogeneity 

associated with PLCE1 mutations substantially increases the complexity of genetic 

counselling, including prenatal diagnosis, and needs to be considered in the discussion about 

renal prognosis with patients. 
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Table 1.Candidate genes tested in order to evaluate the presence of a modifier effect 
 

Gene code Gene full name Gene 
mapping 

Mouse 
model/ 

RP* 

Unigen 
EST 

(kidney)** 
Phospholipase genes       
PLCB1 phospholipase C, beta 1 20p12 Yes/Yes¶ 23 
PLCB2 phospholipase C, beta 2 15q15 Yes/No 14 
PLCB3 phospholipase C, beta 3 11q13 Yes/No 14 
PLCB4 phospholipase C, beta 4 20p12 Yes/No 28 
PLCD1 phospholipase C, delta 1 3p22-p21.3 Yes/No 47 
PLCD3 phospholipase C, delta 3 17q21.31 Yes/No 51 
PLCD4 phospholipase C, delta 4 2q35 Yes/No 18 
PLCG1 phospholipase C, gamma 1 20q12-q13.1 Yes/Yes§ 32 
PLCG2 phospholipase C, gamma 2 16q24.1 Yes/Yes† 65 
PLCH1 ou PLCL3 phospholipase C, eta 1 3q25.31 No 0 
PLCH2 ou PLCL4 phospholipase C, eta 2 1p36.32 No 9 
PLCL1 phospholipase C-like 1 2q33  Yes/No 23 
PLCL2 phospholipase C-like 2 3p24.3 Yes/No 23 
PLCXD1 phosphatidylinositol-specific 

phospholipase C, 
X domain containing 1 

Xp22.33; 
Yp11.32  

No 18 

PLCXD3 phosphatidylinositol-specific 
phospholipase C, 
X domain containing 3 

 5p13.1 No 18 

PLCZ1 phospholipase C, zeta 1 12p12.3 No 0 
Non-phospholipase genes     
BRAF v-raf murine sarcoma viral 

oncogene homolog B1 
7q34 Yes/No‡ 32 

IQGAP1 IQ motif containing GTPase 
activating protein 1 

15q26.1 Yes/No 150 

NPHS1 nephrosis 1, congenital, Finnish 
type (nephrin) 

19q13.1 Yes/Yesλ 18 

 
*Existence of a mouse model (yes/no) and presence of a renal phenotype (RP) in a mouse model (yes/no) 
**Approximate abundance of Expressed Sequence Tags (ESTs) in kidneys, inferred from EST sources and 
provided in the Unigene databank. The number indicates number of transcripts per million. For comparison, 
PLCE1 EST in kidneys = 9 transcripts per millon. 
¶The Plcb1Tg(LGB)56Mbal  transgenic mouse model presents increased kidney weight.25 
§In the Plcg1tm1Ine knock-out mouse model, extensive chimerism (>70% agouti coat color) results in lethality. 
Chimeras with a 30-70% agouti coat color display: enlarged, polycystic kidneys, renal dysplasia (at 2 weeks), 
dilated renal tubules (at >2 weeks), and occasional glomerulosclerosis in high % chimeras with severe renal 
dysplasia.26 

† The Plcg2Ali5 chemically induced (ENU) mouse model presents signs of glomerulonephritis.27 

‡Prenatal/perinatal lethality is present in the knock-in and knock-out braf mouse model, precluding a complete 
assessment of the renal phenotype.28-30 
λNphs1 null mice are massively proteinuric at birth with death occurring in the first 24h. 31 
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Table 2. Patients characteristics (n=139) 
 

 n (%)† 

 All cohort Familial cases Sporadic cases 

Number of cases 139 95 44 

Type of families    

n  68  

Consanguineous family  53 (77.9) NA 

Non-consanguineous multiplex family  15 (22.1) NA 

Ethnic origin    

n 134 68 families 39 

North Africa 31 (23.1) 21 (30.9) 5 (12.8) 

Middle-East 36 (26.9) 23 (33.8) 4 (10.3) 

Europe 46 (34.3) 13 (19.1) 26 (66.7) 

Other 21 (15.7) 11 (16.2) 4 (10.3) 

Renal histological lesions    

n 129 64 families 44 

FSGS 98 (76.0) 50 (78.1) 28 (63.6) 

DMS 25 (19.4) 10 (15.6) 14 (31.8) 

Other 6 (4.7) 4 (6.3) 2 (4.5) 

Age at onset of NS (months)    

n 127 86 41 

Median (range) 23.0 (0-373) 24.0 (0-373) 23.0 (0-81) 

Mean ± SE 46.2 ± 5.7 55.7± 8.1 26.4 (3.4) 

ESKD    

n 131 88 43 

Number of patients reaching ESKD 76 (58.0) 47 (53.4) 29 (67.4) 

Age at onset of ESKD (months)    

n 75 46 29 

Median (range) 68.0 (0.5-264) 81.0 (4-264) 60.0 (0.5-139) 

Mean ± SE 79.7 ± 7.1 94.7 ± 10.4 55.9 ± 5.7 

 
*The number of available data are shown as n. 
†The denominator used to calculate percentages is the number of available data.  
FSGS, Focal segmental glomerulosclerosis; DMS, diffuse mesangial sclerosis; NS, nephrotic syndrome; ESKD, 
End-stage kidney disease; SE, Standard Error; NA, not applicable 
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Table 3. Spectrum of PLCE1 mutations and associated phenotypes  
 
Family/ 
Individual 

Individual Familial / 
Sporadic 

Parental 
consanguinity 

Origin Nucleotide 
alterations(s) 

Predicted effect 
on protein 

Exon Age at 
onset of 
NS 

Age at ESKD Histology 

A. 1 F Yes Pakistan c.961C>T p.R321X   2 3 yr 3 yr FSGS 
A. 2       5 mo 1.4 yr FSGS 

B. 1 F Yes Morocco c.1020_1021 delGT p.V340fs452X* 2 2 yr 2.5 yr DMS 
C. 1 F Yes Morocco c.1148C>G p.S383X  2 9 mo None at 1.2 yr FSGS 
D. 1 F Yes Morocco c.1477C>T p.R493X*¶ 3 3 mo 6 mo DMS 

D. 2       4 mo 8 mo DMS 

E. 1 F Yes Pakistan c.2516insT  p.F839fs889X 8 5.5 yr 5.7 yr FSGS 
E. 2       5.8 yr 5.8 yr FSGS 

E. 3       4.8 yr 5.8 yr FSGS 
F. 1 F Yes Algeria c.3058C>T p.Q1020X 8 6 mo Died at 11 mo ND 
G. 1 F Yes Turkey c.3346C>T p.R1116X¶  10 10 mo 1.2 yr DMS 
H. 1 F Yes Greece c.3736C>T p.R1246X  13 10 mo 3.8 yr FSGS 

H. 2       4 yr 6.5 FSGS 
I. 1 F Yes Turkey c.3736 C>T p.R1246X 13 11 mo None at 1 yr FSGS 
J. 1 S No Bosnia c.3736C>T p.R1246X* 13 6 mo 1.1 yr DMS 

K. 1 S No Serbia c.3736C>T p.R1246X  13 5 yr 5 yr DMS 
L. 1 F No USA c.4157A>T  

c.5669C>T 
p.E1386V het§ 
p.P1890L het§ 

16 
26 

10 mo 7 yr FSGS 

L. 2       12 mo 4 yr FSGS 

M. 1 F No Morocco c.4219C>G p.H1407D§ 16 1.3 yr 1.3 yr DMS 

N. 1 S No France c.5744_5745delC p.T1915fs1916X  26 5 mo 10 mo DMS 
O. 1 F Yes Turkey c.6448C>T p.R2150X  30 11 mo 2.7 yr DMS 

 
All the mutations cited above have been found in the homozygous or compound heterozygous state.  Mutations numbering is based on the c-DNA reference sequence 
(GenBank accession number NM_016341.3). 
*The clinical data of these patients have been previously published in Ismaili K et al., 2008.10 
¶ These mutations have been reported in Hinkes B et al., 2006. 2 
§The Polyphen score of the p.E1386V, p.1890L and p.H1407D variations is 1.94 (possibly damaging), 2.55 (probably damaging) and 2.50 (probably damaging), respectively. 
F, familial case; S, sporadic case; NS, nephrotic syndrome; ESKD, end-stage kidney disease; FSGS, focal segmental glomerulosclerosis; DMS, diffuse mesangial sclerosis 
ND, not determined. 
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Figure 1. PLCE1 mutations reported in the literature, including the mutations detected in the 
present study, with the associated renal histological lesions 
 
a. Exon structure of the PLCE1 gene, GenBank accession number NM_016341.3. The arrows 
indicate relative positions of mutations.  
b. Positions of putative protein domains.  
In red are the novel mutations found in our study. In black are the other mutations reported in the 
literature.2-4 10 The p.P382fsX387 mutation has been reported in one patient for which renal 
histology was not available. 2 We also found the p.Q1020X mutation in one patient without kidney 
biopsy.*The p.R1246X mutation has been reported in DMS cases;10 we also found the same 
mutation in both DMS and FSGS cases. 
DMS, diffuse mesangial sclerosis; FSGS, focal segmental glomerulosclerosis. 
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Figure 2.  Identification of homozygous PLCE1 mutations in 3 unrelated asymptomatic individuals. 
 
The arrows indicate the position of the PLCE1 gene.  
Hom, homozygous; Het, heterozygous, Pu, proteinuria; FSGS, focal segmental glomerulosclerosis; 
DMS, diffuse mesangial sclerosis; ESKD, end-stage kidney disease 
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