8 research outputs found
Causes et consĂ©quences Ă©volutives de lâasexualitĂ© non-clonale chez Artemia
The majority of parthenogenetic species are often thought to be clonal. Clonality is costly in the long term, as it can result in accumulation of deleterious mutations and lower adaptability. However, cases reporting non-clonal asexuals are accumulating. Non-clonal asexuality has very different genomic and fitness consequences compared to clonality, and may be a key intermediate step in the transition from sex to asexuality. Additionally, asexuality may be often non-obligate, with events of cryptic sex. These events may also shape the genome and evolution of asexual lineages. In this PhD, I investigated the reproductive mode of Artemia parthenogenetica and its role in the transition from sex to asexuality and the evolution of asexual lineages. Specifically, I used the capacity of asexually produced males (ârare malesâ) to cross with sexual females and transmit asexuality to their offspring (contagious asexuality), to experimentally generate new lineages. I showed that diploid asexual Artemia have a non-clonal reproductive mode, in which recombination results in loss of heterozygosity (LOH) in the offspring. LOH is costly as it can reveal recessive deleterious mutations. Perhaps due to selection caused by the deleterious consequences of LOH, the recombination rate in these asexuals was lower than in a closely related sexual species. I also found that sex-asex hybrids had a mixed sexual and asexual reproduction, and that asexual females from natural populations were capable of rare sex. This means that rare events of sex in asexual Artemia could occur between a rare male and an asexual female reproducing sexually. In a review of how asexual reproductive modes were identified in the literature, I found that there was a bias in the identification and general perception of asexuals toward clonality, as an important part of the asexual species reviewed were in fact non-clonal, and evidence for clonality was often missing. Furthermore, the maj ority of non-clonal asexuals had reproductive modes that resulted in low LOH. This suggests that non-clonal asexuals often evolve secondarily toward a more clonal-like reproduction, so that even clonal species may not have been clonal throughout their evolutionary history. Finally, using genomics on contagion-generated lineages, I found that in Artemia, rare males are produced asexually through recombination and thus LOH on the ZW sex chromosomes. We know that contagious asexuality, and possibly between-lineages crosses, occurred in the evolutionary history of A. parthenogenetica. Perhaps, contagious asexuality and/or within asexual sex events provide opportunities for the gene(s) controlling asexuality to escape declining lineages into new ones. In this case, contagious asexuality through rare males may be the reason why recombination persists in asexual Artemia. Whether non-clonal asexuality and sex events occur in many parthenogenetic species is still unclear, and requires thorou gh investigation. Theoretically, there is a strong need for models taking into account the genomic consequences of non-clonal and non-obligate asexuality, and their role in the transition from sex to asexuality and the maintenance of sex.La majoritĂ© des espĂšces parthĂ©nogĂ©tiques sont souvent perçues comme clonales. La clonalitĂ© est coĂ»teuse Ă long terme, car elle peut entraĂźner l'accumulation de mutations dĂ©lĂ©tĂšres et une moins bonne capacitĂ© dâadaptation. Cependant, les cas dâespĂšces asexuĂ©es non clonales s'accumulent. LâasexualitĂ© non-clonale gĂ©nĂšre des consĂ©quences gĂ©nomiques et de fitness trĂšs diffĂ©rentes de la clonalitĂ©, et pourraient reprĂ©senter une Ă©tape-clĂ© dans la transition du sexe vers lâasexualitĂ©. De plus, lâasexualitĂ© peut ĂȘtre souvent non-obligatoire, avec des Ă©vĂ©nements de sexe cryptiques. Ces Ă©vĂšnements peuvent aussi façonner le gĂ©nome et l'Ă©volution des lignĂ©es asexuĂ©es. Dans cette thĂšse, j'ai Ă©tudiĂ© le mode de reproduction d'Artemia parthenogenetica, et son rĂŽle dans la transition du sexe vers l'asexualitĂ© et l'Ă©volution des lignĂ©es asexuĂ©es. En particulier, j'ai utilisĂ© la capacitĂ© des mĂąles produits par voie asexuĂ©e (âmĂąles raresâ) Ă se croiser avec des femelles sexuĂ©es et Ă transmettre lâasexualitĂ© Ă leurs descendants (asexualitĂ© contagieuse), pour gĂ©nĂ©rer expĂ©rimentalement de nouvelles lignĂ©es. Jâai montrĂ© que les Artemia asexuĂ©s diploĂŻdes ont un mode de reproduction non-clonal, dans lequel la recombinaison entraĂźne une perte d'hĂ©tĂ©rozygotie (LOH, pour âloss of heterozygosityâ) chez les descendants. Le LOH est coĂ»teux car il peut rĂ©vĂ©ler des mutations dĂ©lĂ©tĂšres rĂ©cessives. Peut-ĂȘtre en raison de la sĂ©lection causĂ©e par les consĂ©quences dĂ©lĂ©tĂšres du LOH, le taux de recombinaison chez les Artemia asexuĂ©s Ă©tait plus faible que chez une espĂšce sexuĂ©e apparentĂ©e. J'ai Ă©galement constatĂ© que les hybrides sexuĂ©s avaient une reproduction mixte sexuĂ©e et asexuĂ©e, et que les femelles asexuĂ©es issues de populations naturelles Ă©taient capables de sexe rare. Cela signifie que des Ă©vĂ©nements rares de sexe chez les Artemia asexuĂ©s pourraient se produire entre un mĂąle rare et une femelle asexuĂ©e se reproduisant sexuellement. En effectuant une revue de la façon don t les modes de reproduction asexuĂ©s sont identifiĂ©s dans la littĂ©rature, j'ai constatĂ© que l'identification et la perception gĂ©nĂ©rale des asexuĂ©s Ă©taient biaisĂ©es en faveur de la clonalitĂ©, car une grande partie des espĂšces asexuĂ©es examinĂ©es Ă©taient en fait non-clonales, et les preuves de la clonalitĂ© Ă©taient souvent insuffisantes. En outre, la majoritĂ© des asexuĂ©s non-clonaux avaient des modes de reproduction qui entraĂźnaient de faibles taux de LOH. Cela suggĂšre que les asexuĂ©s non-clonaux Ă©voluent souvent secondairement vers une reproduction plus clonale. Ainsi, mĂȘme les espĂšces clonales pourraient ne pas avoir Ă©tĂ© clonales au cours de leur histoire Ă©volutive. Enfin, avec une analyse gĂ©nomique sur de nouvelles lignĂ©es gĂ©nĂ©rĂ©es par contagion, j'ai dĂ©montrĂ© que chez Artemia, les mĂąles rares sont produits asexuellement par recombinaison et donc LOH sur les chromosomes sexuels ZW. Nous savons que l'asexualitĂ© contagieuse, et peut-ĂȘtre des croisements entre lignĂ©es, ont eu lieu au cou rs de l'histoire Ă©volutive d'A. parthenogenetica. L'asexualitĂ© contagieuse et/ou des Ă©vĂ©nements sexuels chez les asexuĂ©s constituent peut-ĂȘtre des opportunitĂ©s pour que le(s) gĂšne(s) contrĂŽlant l'asexualitĂ© s'Ă©chappe(nt) des lignĂ©es en dĂ©clin vers de nouvelles lignĂ©es. Dans ce cas, l'asexualitĂ© contagieuse par le biais de mĂąles rares pourrait ĂȘtre la raison pour laquelle la recombinaison persiste chez les Artemia asexuĂ©s. Chez de nombreuses espĂšces, lâidentification de lâasexualitĂ© non clonale et des Ă©vĂ©nements de sexe n'est toujours pas claire et nĂ©cessite une Ă©tude approfondie. ThĂ©oriquement, il y a un fort besoin de modĂšles prenant en compte les consĂ©quences gĂ©nomiques de l'asexualitĂ© non-clonale et non-obligatoire, et leur rĂŽle dans la transition du sexe vers l'asexualitĂ© et la maintenance du sexe
Causes et consĂ©quences Ă©volutives de lâasexualitĂ© non-clonale chez Artemia
The majority of parthenogenetic species are often thought to be clonal. Clonality is costly in the long term, as it can result in accumulation of deleterious mutations and lower adaptability. However, cases reporting non-clonal asexuals are accumulating. Non-clonal asexuality has very different genomic and fitness consequences compared to clonality, and may be a key intermediate step in the transition from sex to asexuality. Additionally, asexuality may be often non-obligate, with events of cryptic sex. These events may also shape the genome and evolution of asexual lineages. In this PhD, I investigated the reproductive mode of Artemia parthenogenetica and its role in the transition from sex to asexuality and the evolution of asexual lineages. Specifically, I used the capacity of asexually produced males (ârare malesâ) to cross with sexual females and transmit asexuality to their offspring (contagious asexuality), to experimentally generate new lineages. I showed that diploid asexual Artemia have a non-clonal reproductive mode, in which recombination results in loss of heterozygosity (LOH) in the offspring. LOH is costly as it can reveal recessive deleterious mutations. Perhaps due to selection caused by the deleterious consequences of LOH, the recombination rate in these asexuals was lower than in a closely related sexual species. I also found that sex-asex hybrids had a mixed sexual and asexual reproduction, and that asexual females from natural populations were capable of rare sex. This means that rare events of sex in asexual Artemia could occur between a rare male and an asexual female reproducing sexually. In a review of how asexual reproductive modes were identified in the literature, I found that there was a bias in the identification and general perception of asexuals toward clonality, as an important part of the asexual species reviewed were in fact non-clonal, and evidence for clonality was often missing. Furthermore, the maj ority of non-clonal asexuals had reproductive modes that resulted in low LOH. This suggests that non-clonal asexuals often evolve secondarily toward a more clonal-like reproduction, so that even clonal species may not have been clonal throughout their evolutionary history. Finally, using genomics on contagion-generated lineages, I found that in Artemia, rare males are produced asexually through recombination and thus LOH on the ZW sex chromosomes. We know that contagious asexuality, and possibly between-lineages crosses, occurred in the evolutionary history of A. parthenogenetica. Perhaps, contagious asexuality and/or within asexual sex events provide opportunities for the gene(s) controlling asexuality to escape declining lineages into new ones. In this case, contagious asexuality through rare males may be the reason why recombination persists in asexual Artemia. Whether non-clonal asexuality and sex events occur in many parthenogenetic species is still unclear, and requires thorou gh investigation. Theoretically, there is a strong need for models taking into account the genomic consequences of non-clonal and non-obligate asexuality, and their role in the transition from sex to asexuality and the maintenance of sex.La majoritĂ© des espĂšces parthĂ©nogĂ©tiques sont souvent perçues comme clonales. La clonalitĂ© est coĂ»teuse Ă long terme, car elle peut entraĂźner l'accumulation de mutations dĂ©lĂ©tĂšres et une moins bonne capacitĂ© dâadaptation. Cependant, les cas dâespĂšces asexuĂ©es non clonales s'accumulent. LâasexualitĂ© non-clonale gĂ©nĂšre des consĂ©quences gĂ©nomiques et de fitness trĂšs diffĂ©rentes de la clonalitĂ©, et pourraient reprĂ©senter une Ă©tape-clĂ© dans la transition du sexe vers lâasexualitĂ©. De plus, lâasexualitĂ© peut ĂȘtre souvent non-obligatoire, avec des Ă©vĂ©nements de sexe cryptiques. Ces Ă©vĂšnements peuvent aussi façonner le gĂ©nome et l'Ă©volution des lignĂ©es asexuĂ©es. Dans cette thĂšse, j'ai Ă©tudiĂ© le mode de reproduction d'Artemia parthenogenetica, et son rĂŽle dans la transition du sexe vers l'asexualitĂ© et l'Ă©volution des lignĂ©es asexuĂ©es. En particulier, j'ai utilisĂ© la capacitĂ© des mĂąles produits par voie asexuĂ©e (âmĂąles raresâ) Ă se croiser avec des femelles sexuĂ©es et Ă transmettre lâasexualitĂ© Ă leurs descendants (asexualitĂ© contagieuse), pour gĂ©nĂ©rer expĂ©rimentalement de nouvelles lignĂ©es. Jâai montrĂ© que les Artemia asexuĂ©s diploĂŻdes ont un mode de reproduction non-clonal, dans lequel la recombinaison entraĂźne une perte d'hĂ©tĂ©rozygotie (LOH, pour âloss of heterozygosityâ) chez les descendants. Le LOH est coĂ»teux car il peut rĂ©vĂ©ler des mutations dĂ©lĂ©tĂšres rĂ©cessives. Peut-ĂȘtre en raison de la sĂ©lection causĂ©e par les consĂ©quences dĂ©lĂ©tĂšres du LOH, le taux de recombinaison chez les Artemia asexuĂ©s Ă©tait plus faible que chez une espĂšce sexuĂ©e apparentĂ©e. J'ai Ă©galement constatĂ© que les hybrides sexuĂ©s avaient une reproduction mixte sexuĂ©e et asexuĂ©e, et que les femelles asexuĂ©es issues de populations naturelles Ă©taient capables de sexe rare. Cela signifie que des Ă©vĂ©nements rares de sexe chez les Artemia asexuĂ©s pourraient se produire entre un mĂąle rare et une femelle asexuĂ©e se reproduisant sexuellement. En effectuant une revue de la façon don t les modes de reproduction asexuĂ©s sont identifiĂ©s dans la littĂ©rature, j'ai constatĂ© que l'identification et la perception gĂ©nĂ©rale des asexuĂ©s Ă©taient biaisĂ©es en faveur de la clonalitĂ©, car une grande partie des espĂšces asexuĂ©es examinĂ©es Ă©taient en fait non-clonales, et les preuves de la clonalitĂ© Ă©taient souvent insuffisantes. En outre, la majoritĂ© des asexuĂ©s non-clonaux avaient des modes de reproduction qui entraĂźnaient de faibles taux de LOH. Cela suggĂšre que les asexuĂ©s non-clonaux Ă©voluent souvent secondairement vers une reproduction plus clonale. Ainsi, mĂȘme les espĂšces clonales pourraient ne pas avoir Ă©tĂ© clonales au cours de leur histoire Ă©volutive. Enfin, avec une analyse gĂ©nomique sur de nouvelles lignĂ©es gĂ©nĂ©rĂ©es par contagion, j'ai dĂ©montrĂ© que chez Artemia, les mĂąles rares sont produits asexuellement par recombinaison et donc LOH sur les chromosomes sexuels ZW. Nous savons que l'asexualitĂ© contagieuse, et peut-ĂȘtre des croisements entre lignĂ©es, ont eu lieu au cou rs de l'histoire Ă©volutive d'A. parthenogenetica. L'asexualitĂ© contagieuse et/ou des Ă©vĂ©nements sexuels chez les asexuĂ©s constituent peut-ĂȘtre des opportunitĂ©s pour que le(s) gĂšne(s) contrĂŽlant l'asexualitĂ© s'Ă©chappe(nt) des lignĂ©es en dĂ©clin vers de nouvelles lignĂ©es. Dans ce cas, l'asexualitĂ© contagieuse par le biais de mĂąles rares pourrait ĂȘtre la raison pour laquelle la recombinaison persiste chez les Artemia asexuĂ©s. Chez de nombreuses espĂšces, lâidentification de lâasexualitĂ© non clonale et des Ă©vĂ©nements de sexe n'est toujours pas claire et nĂ©cessite une Ă©tude approfondie. ThĂ©oriquement, il y a un fort besoin de modĂšles prenant en compte les consĂ©quences gĂ©nomiques de l'asexualitĂ© non-clonale et non-obligatoire, et leur rĂŽle dans la transition du sexe vers l'asexualitĂ© et la maintenance du sexe
Not so clonal asexuals: Unraveling the secret sex life of Artemia parthenogenetica
International audienceThe maintenance of sex is paradoxical as sexual species pay the âtwofold cost of malesâ and should thus quickly be replaced by asexual mutants reproducing clonally. However, asexuals may not be strictly clonal and engage in âcryptic sex,â challenging this simple scenario. We study the cryptic sex life of the brine shrimp Artemia parthenogenetica, which has once been termed an âancient asexualâ and where no genetic differences have ever been observed between parents and offspring. This asexual species rarely produces males, which can hybridize with sexual females of closely related species and transmit asexuality to their offspring. Using such hybrids, we show that recombination occurs in asexual lineages, causing loss-of-heterozygosity and parent-offspring differences. These differences cannot generally be observed in field-sampled asexuals because once heterozygosity is lost, subsequent recombination leaves no footprint. Furthermore, using extensive paternity tests, we show that hybrid females can reproduce both sexually and asexually, and transmit asexuality to both sexually and asexually produced offspring in a dominant fashion. Finally, we show that, contrary to previous reports, field-sampled asexual females also rarely reproduce sexually (rate âŒ2â°). Overall, most previously known facts about Artemia asexuality turned out to be erroneous. More generally, our findings suggest that the evidence for strictly clonal reproduction of asexual species needs to be reconsidered, and that rare sex and consequences of nonclonal asexuality, such as gene flow within asexuals, need to be more widely taken into account in more realistic models for the maintenance of sex and the persistence of asexual lineages
Asexual male production by ZW recombination in Artemia parthenogenetica
In some asexual species, parthenogenetic females occasionally produce males, which may strongly affect the evolution and maintenance of asexuality if they cross with related sexuals and transmit genes causing asexuality to their offspring (âcontagious parthenogenesisâ). How these males arise in the first place has remained enigmatic, especially in species with sex chromosomes. Here, we test the hypothesis that rare, asexually produced males of the crustacean Artemia parthenogenetica are produced by recombination between the Z and W sex chromosomes during non-clonal parthenogenesis, resulting in ZZ males through loss of heterozygosity at the sex determination locus. We used RAD-sequencing to compare asexual mothers with their male and female offspring. Markers on several sex-chromosome scaffolds indeed lost heterozygosity in all male but no female offspring, suggesting that they correspond to the sex-determining region. Other sex-chromosome scaffolds lost heterozygosity in only a part of the male offspring, consistent with recombination occurring at a variable location. Alternative hypotheses for the production of these males (such as partial or total hemizygosity of the Z) could be excluded. Rare males are thus produced because recombination is not entirely suppressed during parthenogenesis in A. parthenogenetica . This finding may contribute to explaining the maintenance of recombination in these asexuals
The origin of asexual brine shrimps
Determining how and how often asexual lineages emerge within sexual species is central to our understanding of sex-asex transitions and the long-term maintenance of sex. Asexuality can arise âby transmissionâ from an existing asexual lineage to a new one, through different types of crosses. The occurrence of these crosses, cryptic sex, variation in ploidy and recombination within asexuals greatly complicates the study of sex-asex transitions, as they preclude the use of standard phylogenetic methods and genetic distance metrics. In this study we show how to overcome these challenges by developing new approaches to investigate the origin of the various asexual lineages of the brine shrimp Artemia parthenogenetica. We use a large sample of asexuals, including all known polyploids, and their sexual relatives. We combine flow cytometry with mitochondrial and nuclear DNA data. We develop new genetic distance measures and methods to compare various scenarios describing the origin of the different lineages. We find that all diploid and polyploid A. parthenogenetica likely arose within the last 80,000 years through successive and nested hybridization events that involved backcrosses with different sexual species. All A. parthenogenetica have the same common ancestor and therefore likely carry the same asexuality gene(s) and reproduce by automixis. These findings radically change our view of sex-asex transitions in this group, and show the importance of considering asexuality âby transmissionâ scenarios. The methods developed are applicable to many other asexual taxa.N
The origins of asexual brine shrimps
[Methods] Flow cytometry of 147 individuals (+59 individuals from NougueÌ et al. 2015)
COI sequencing of 336 individuals using primers 1/2COI_Fol-F and 1/2COI_Fol-R following the protocol of MunÌoz et al. (2010).
COI sequencing of 23 individuals using primers Co1APAR-F(5â-259 TTTGGAGCTTGAGCAGGAAT-3â) and Co1APAR-R(5â-260 TGCGGGATCAAAGAAAGAAG-3â).
Genotyping of 432 individuals with a panel of 12 microsatellite markers (see MunÌoz et al. 2008; NougueÌ et al. 2015 for details regarding markers and amplification protocol)
[Usage Notes] See README files.Determining how and how often asexual lineages emerge within sexual species is central to our understanding of sex-asex transitions and the long-term maintenance of sex. Asexuality can arise âby transmissionâ from an existing asexual lineage to a new one, through different types of crosses. The occurrence of these crosses, cryptic sex, variation in ploidy and recombination within asexuals greatly complicates the study of sex-asex transitions, as they preclude the use of standard phylogenetic methods and genetic distance metrics. In this study we show how to overcome these challenges by developing new approaches to investigate the origin of the various asexual lineages of the brine shrimp Artemia parthenogenetica. We use a large sample of asexuals, including all known polyploids, and their sexual relatives. We combine flow cytometry with mitochondrial and nuclear DNA data. We develop new genetic distance measures and methods to compare various scenarios describing the origin of the different lineages. We find that all diploid and polyploid A. parthenogenetica likely arose within the last 80,000 years through successive and nested hybridization events that involved backcrosses with different sexual species. All A. parthenogenetica have the same common ancestor and therefore likely carry the same asexuality gene(s) and reproduce by automixis. These findings radically change our view of sex-asex transitions in this group, and show the importance of considering asexuality âby transmissionâ scenarios. The methods developed are applicable to many other asexual taxa.Peer reviewe
The origins of asexual brine shrimps
Determining how and how often asexual lineages emerge within sexual species is central to our understanding of sex-asex transitions and the long-term maintenance of sex. Asexuality can arise "by transmission" from an existing asexual lineage to a new one, through different types of crosses. The occurrence of these crosses, cryptic sex, variation in ploidy and recombination within asexuals greatly complicates the study of sex-asex transitions, as they preclude the use of standard phylogenetic methods and genetic distance metrics. In this study we show how to overcome these challenges by developing new approaches to investigate the origin of the various asexual lineages of the brine shrimp Artemia parthenogenetica. We use a large sample of asexuals, including all known polyploids, and their sexual relatives. We combine flow cytometry with mitochondrial and nuclear DNA data. We develop new genetic distance measures and methods to compare various scenarios describing the origin of the different lineages. We find that all diploid and polyploid A. parthenogenetica likely arose within the last 80,000 years through successive and nested hybridization events that involved backcrosses with different sexual species. All A. parthenogenetica have the same common ancestor and therefore likely carry the same asexuality gene(s) and reproduce by automixis. These findings radically change our view of sex-asex transitions in this group, and show the importance of considering asexuality "by transmission" scenarios. The methods developed are applicable to many other asexual taxa.Peer reviewe
The Origin of Asexual Brine Shrimps
Determining how and how often asexual lineages emerge within sexual species is central to our understanding of sex-asex transitions and the long-term maintenance of sex. Asexuality can arise âby transmissionâ from an existing asexual lineage to a new one through different types of crosses. The occurrence of these crosses, cryptic sex, variations in ploidy, and recombination within asexuals greatly complicates the study of sex-asex transitions, as they preclude the use of standard phylogenetic methods and genetic distance metrics. In this study we show how to overcome these challenges by developing new approaches to investigate the origin of the various asexual lineages of the brine shrimp Artemia parthenogenetica. We use a large sample of asexuals, including all known polyploids, and their sexual relatives. We combine flow cytometry with mitochondrial and nuclear DNA data. We develop new genetic distance measures and methods to compare various scenarios describing the origin of the different lineages. We find that all diploid and polyploid A. parthenogenetica likely arose within the past 80,000 years through successive and nested hybridization events that involved backcrosses with different sexual species. All A. parthenogenetica have the same common ancestor and therefore likely carry the same asexuality gene(s) and reproduce by automixis. These findings radically change our view of sex-asex transitions in this group and show the importance of considering scenarios of asexuality by transmission. The methods developed are applicable to many other asexual taxa.Peer reviewe