8,939 research outputs found

    A Kolmogorov-Zakharov Spectrum in AdSAdS Gravitational Collapse

    Full text link
    We study black hole formation during the gravitational collapse of a massless scalar field in asymptotically AdSDAdS_D spacetimes for D=4,5D=4,5. We conclude that spherically symmetric gravitational collapse in asymptotically AdSAdS spaces is turbulent and characterized by a Kolmogorov-Zakharov spectrum. Namely, we find that after an initial period of weakly nonlinear evolution, there is a regime where the power spectrum of the Ricci scalar evolves as ω−s\omega^{-s} with the frequency, ω\omega, and s≈1.7±0.1s\approx 1.7\pm 0.1.Comment: 5 pages, 4 figures. v2: Typos, other initial profile considered for universality, error analysis, close to PRL versio

    Swinging and tumbling of elastic capsules in shear flow

    Full text link
    The deformation of an elastic micro-capsule in an infinite shear flow is studied numerically using a spectral method. The shape of the capsule and the hydrodynamic flow field are expanded into smooth basis functions. Analytic expressions for the derivative of the basis functions permit the evaluation of elastic and hydrodynamic stresses and bending forces at specified grid points in the membrane. Compared to methods employing a triangulation scheme, this method has the advantage that the resulting capsule shapes are automatically smooth, and few modes are needed to describe the deformation accurately. Computations are performed for capsules both with spherical and ellipsoidal unstressed reference shape. Results for small deformations of initially spherical capsules coincide with analytic predictions. For initially ellipsoidal capsules, recent approximative theories predict stable oscillations of the tank-treading inclination angle, and a transition to tumbling at low shear rate. Both phenomena have also been observed experimentally. Using our numerical approach we could reproduce both the oscillations and the transition to tumbling. The full phase diagram for varying shear rate and viscosity ratio is explored. While the numerically obtained phase diagram qualitatively agrees with the theory, intermittent behaviour could not be observed within our simulation time. Our results suggest that initial tumbling motion is only transient in this region of the phase diagram.Comment: 20 pages, 7 figure

    The more the better? A comparison of the information sources used by the public during two infectious disease outbreaks

    Get PDF
    Recent infectious disease outbreaks have resulted in renewed recognition of the importance of risk communication planning and execution to public health control strategies. Key to these efforts is public access to information that is understandable, reliable and meets their needs for informed decision-making on protective health behaviours. Learning from the trends in sources used in previous outbreaks will enable improvements in information access in future outbreaks. Two separate random-digit dialled telephone surveys were conducted in Alberta, Canada, to explore information sources used by the public, together with their perceived usefulness and credibility, during the 2003 Severe Acute Respiratory Syndrome (SARS) epidemic (n = 1209) and 2009–2010 H1N1 pandemic (n = 1206). Traditional mass media were the most used information sources in both surveys. Although use of the Internet increased from 25% during SARS to 56% during H1N1, overall use of social media was not as high as anticipated. Friends and relatives were commonly used as an information source, but were not deemed very useful or credible. Conversely, doctors and health professionals were considered credible, but not consulted as frequently. The use of five or more information sources increased by almost 60% between the SARS and H1N1 surveys. There was a shift to older, more educated and more affluent respondents between the surveys, most likely caused by a decrease in the use of landlines amongst younger Canadians. It was concluded that people are increasingly using multiple sources of health risk information, presumably in a complementary manner. Subsequently, although using online media is important, this should be used to augment rather than replace more traditional information channels. Efforts should be made to improve knowledge transfer to health care professionals and doctors and provide them with opportunities to be more accessible as information sources. Finally, the future use of telephone surveys needs to account for the changing demographics of the respondents accessed through such surveys

    MM Algorithms for Geometric and Signomial Programming

    Full text link
    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.Comment: 16 pages, 1 figur

    Quantum Turbulence in a Trapped Bose-Einstein Condensate

    Full text link
    We study quantum turbulence in trapped Bose-Einstein condensates by numerically solving the Gross-Pitaevskii equation. Combining rotations around two axes, we successfully induce quantum turbulent state in which quantized vortices are not crystallized but tangled. The obtained spectrum of the incompressible kinetic energy is consistent with the Kolmogorov law, the most important statistical law in turbulence.Comment: 4 pages, 4 figures, Physical Review A 76, 045603 (2007

    One, two, or three stars? An investigation of an unusual eclipsing binary candidate undergoing dramatic period changes

    Get PDF
    We report our investigation of 1SWASP J234401.81-212229.1, a variable with a 18 461.6 s period. After identification in a 2011 search of the SuperWASP archive for main-sequence eclipsing binary candidates near the distribution's short-period limit of ~0.20 d, it was measured to be undergoing rapid period decrease in our earlier work, though later observations supported a cyclic variation in period length. Spectroscopic data obtained in 2012 with the Southern African Large Telescope did not, however, support the interpretation of the object as a normal eclipsing binary. Here, we consider three possible explanations consistent with the data: a single-star oblique rotator model in which variability results from stable cool spots on opposite magnetic poles; a two-star model in which the secondary is a brown dwarf; and a three-star model involving a low-mass eclipsing binary in a hierarchical triple system. We conclude that the latter is the most likely model

    How asynchrony affects rumor spreading time

    Get PDF
    International audienceIn standard randomized (push-pull) rumor spreading, nodes communicate in synchronized rounds. In each round every node contacts a random neighbor in order to exchange the rumor (i.e., either push the rumor to its neighbor or pull it from the neighbor). A natural asynchronous variant of this algorithm is one where each node has an independent Poisson clock with rate 1, and every node contacts a random neighbor whenever its clock ticks. This asynchronous variant is arguably a more realistic model in various settings, including message broadcasting in communication networks, and information dissemination in social networks. In this paper we study how asynchrony affects the rumor spreading time, that is, the time before a rumor originated at a single node spreads to all nodes in the graph. Our first result states that the asynchronous push-pull rumor spreading time is asymptotically bounded by the standard synchronous time. Precisely, we show that for any graph G on n nodes, where the synchronous push-pull protocol informs all nodes within T (G) rounds with high probability, the asynchronous protocol needs at most time O(T (G) + log n) to inform all nodes with high probability. On the other hand, we show that the expected synchronous push-pull rumor spreading time is bounded by O(√ n) times the expected asynchronous time. These results improve upon the bounds for both directions shown recently by Acan et al. (PODC 2015). An interesting implication of our first result is that in regular graphs, the weaker push-only variant of synchronous rumor spreading has the same asymptotic performance as the synchronous push-pull algorithm

    Second harmonic generation on incommensurate structures: The case of multiferroic MnWO4

    Full text link
    A comprehensive analysis of optical second harmonic generation (SHG) on an incommensurate (IC) magnetically ordered state is presented using multiferroic MnWO4 as model compound. Two fundamentally different SHG contributions coupling to the primary IC magnetic order or to secondary commensurate projections of the IC state, respectively, are distinguished. Whereas the latter can be described within the formalism of the 122 commensurate magnetic point groups the former involves a breakdown of the conventional macroscopic symmetry analysis because of its sensitivity to the lower symmetry of the local environment in a crystal lattice. Our analysis thus foreshadows the fusion of the hitherto disjunct fields of nonlinear optics and IC order in condensed-matter systems
    • …
    corecore