16,932 research outputs found

    Thermocapillary effects in driven dewetting and self-assembly of pulsed laser-irradiated metallic films

    Get PDF
    In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and Marangoni numbers, etc. are elucidated. It is observed that the film stability is promoted for such parameters variations that increase the heat production in the film. In the numerical simulations the impacts of different irradiation modes are investigated. In particular, we obtain that in the interference heating mode the spatially periodic irradiation results in a spatially periodic film rupture with the same, or nearly equal period. The 2D model qualitatively reproduces the results of the experimental observations of a film stability and spatial ordering of a re-solidified nanostructures

    QCD Thermodynamics with Improved Actions

    Get PDF
    The thermodynamics of the SU(3) gauge theory has been analyzed with tree level and tadpole improved Symanzik actions. A comparison with the continuum extrapolated results for the standard Wilson action shows that improved actions lead to a drastic reduction of finite cut-off effects already on lattices with temporal extent Nτ=4N_\tau=4. Results for the pressure, the critical temperature, surface tension and latent heat are presented. First results for the thermodynamics of four-flavour QCD with an improved staggered action are also presented. They indicate similarly large improvement factors for bulk thermodynamics.Comment: Talk presented at LATTICE96(finite temperature) 4 pages, LaTeX2e file, 6 eps-file

    String Tension and Thermodynamics with Tree Level and Tadpole Improved Actions

    Get PDF
    We calculate the string tension, deconfinement transition temperature and bulk thermodynamic quantities of the SU(3) gauge theory using tree level and tadpole improved actions. Finite temperature calculations have been performed on lattices with temporal extent N_tau = 3 and 4. Compared to calculations with the standard Wilson action on this size lattices we observe a drastic reduction of the cut-off dependence of bulk thermodynamic observables at high temperatures. In order to test the influence of improvement on long-distance observables at T_c we determine the ratio T_c/sqrt(sigma). For all actions, including the standard Wilson action, we find results which differ only little from each other. We do, however, observe an improved asymptotic scaling behaviour for the tadpole improved action compared to the Wilson and tree level improved actions.Comment: 20 pages, LaTeX2e File, 8 coloured Postscript figures, new analysis added, recent Wilson action string tension results included, figures replace

    Data Mining and Quantitative Structure-Activity Relationships of Inhibitors for Treating Alzheimer's Disease

    Get PDF
    poster abstractAmyloid cleaving enzyme-1 (BACE1) is a target of interest for treating patients with Alzheimer’s disease (AD). As of 2007, more than 37 million people worldwide are afflicted with the disease. Incidence of the disease keeps increasing as the population ages and fewer people die of other diseases. ß-Amyloid precursor protein (APP) is a natural protein associated with neurons of the brain. In Alzheimer's disease, APP is cleaved by BACE1 at the beta-site, resulting in short 42 amino acid segments called amyloid-ß (Aß). Aggregation of Aß into plaques results in the death of neurons and is associated with AD. Inhibition of the BACE1 enzyme may prevent Aß formation and prevent the development or progression of AD. Known BACE1 inhibitors are analyzed using computational chemistry techniques, and quantitative structure-activity relationships (QSAR) are developed

    Model-Independent Semileptonic Form Factors Using Dispersion Relations

    Full text link
    We present a method for parametrizing heavy meson semileptonic form factors using dispersion relations, and from it produce a two-parameter description of the B -> B elastic form factor. We use heavy quark symmetry to relate this function to B -> D* l nu form factors, and extract |V_cb|=0.0355^{+0.0029}_{-0.0025} from experimental data with a least squares fit. Our method eliminates model-dependent uncertainties inherent in choosing a parametrization for the extrapolation of the differential decay rate to threshold.Comment: uses lanlmac(harvmac) and epsf, 12 pages, 1 eps figure included (Talk by BG at the 6-th International Symposium on Heavy Flavour Physics, Pisa, Italy, 6--10 June, 1995

    Resolving velocity space dynamics in continuum gyrokinetics

    Full text link
    Many plasmas of interest to the astrophysical and fusion communities are weakly collisional. In such plasmas, small scales can develop in the distribution of particle velocities, potentially affecting observable quantities such as turbulent fluxes. Consequently, it is necessary to monitor velocity space resolution in gyrokinetic simulations. In this paper, we present a set of computationally efficient diagnostics for measuring velocity space resolution in gyrokinetic simulations and apply them to a range of plasma physics phenomena using the continuum gyrokinetic code GS2. For the cases considered here, it is found that the use of a collisionality at or below experimental values allows for the resolution of plasma dynamics with relatively few velocity space grid points. Additionally, we describe implementation of an adaptive collision frequency which can be used to improve velocity space resolution in the collisionless regime, where results are expected to be independent of collision frequency.Comment: 20 pages, 11 figures, submitted to Phys. Plasma

    Simple Structure-Based Approach for Predicting the Activity of Inhibitors of Beta-Secretase (BACE1) Associated with Alzheimer's Disease

    Get PDF
    poster abstractBeta-site amyloid precursor protein cleaving enzyme-1 (BACE1) is a target of interest for treating patients with Alzheimer’s disease (AD). Inhibition of BACE1 may prevent amyloid-ß (Aß) plaque formation and the development or progression of Alzheimer’s disease. Known BACE1 inhibitors were analyzed using computational chemistry and cheminformatics techniques to search for quantitative structure− activity relationships (QSAR). A remarkable relationship was found with only two simple descriptors with a square of the linear correlation coefficient r2 of 0.75. The main descriptor is the number of hydrophobic contacts in the range 4−5 Å between the atoms of the ligand and active site. The other descriptor is the number of short (<2.8 Å) hydrogen bonds. Our approach uses readily available structural data on protein- inhibitor complexes in the Protein Data Bank (PDB) but would be equally applicable to proprietary structural biology data. The findings can aid structure-based design of improved BACE-1 inhibitors. If an inhibitor has less observed activity than predicted by our correlation, the compound should be retested because the first assay may have underestimated the compound’s true activity

    New Constraints on Dispersive Form Factor Parameterizations from the Timelike Region

    Get PDF
    We generalize a recent model-independent form factor parameterization derived from rigorous dispersion relations to include constraints from data in the timelike region. These constraints dictate the convergence properties of the parameterization and appear as sum rules on the parameters. We further develop a new parameterization that takes into account finiteness and asymptotic conditions on the form factor, and use it to fit to the elastic \pi electromagnetic form factor. We find that the existing world sample of timelike data gives only loose bounds on the form factor in the spacelike region, but explain how the acquisition of additional timelike data or fits to other form factors are expected to give much better results. The same parameterization is seen to fit spacelike data extremely well.Comment: 24 pages, latex (revtex), 3 eps figure

    SU(3) Latent Heat and Surface Tension from Tree Level and Tadpole Improved Actions

    Get PDF
    We analyze the latent heat and surface tension at the SU(3) deconfinement phase transition with tree level and tadpole improved Symanzik actions on lattices with temporal extent Nτ=3N_\tau = 3 and 4 and spatial extent Nσ/Nτ=4N_\sigma/ N_\tau = 4, 6 and 8. In comparison to the standard Wilson action we do find a drastic reduction of cut-off effects already with tree level improved actions. On lattices with temporal extent Nτ=4N_\tau=4 results for the surface tension and latent heat obtained with a tree level improved action agree well with those obtained with a tadpole improved action. A comparison with Nτ=3N_\tau=3 calculations, however, shows that results obtained with tadpole action remain unaffected by cut-off effects even on this coarse lattice, while the tree level action becomes sensitive to the cut-off. For the surface tension and latent heat we find σI/Tc3=0.0155 (16)\sigma_I/ T_c^3 = 0.0155~(16) and Δϵ/Tc4=1.40 (9)\Delta\epsilon/T_c^4 = 1.40~(9), respectively.Comment: 11 pages, LaTeX2e File, 3 Postscript figure

    The Kepler Light Curves of AGN: A Detailed Analysis

    Full text link
    We present a comprehensive analysis of 21 light curves of Type 1 AGN from the Kepler spacecraft. First, we describe the necessity and development of a customized pipeline for treating Kepler data of stochastically variable sources like AGN. We then present the light curves, power spectral density functions (PSDs), and flux histograms. The light curves display an astonishing variety of behaviors, many of which would not be detected in ground-based studies, including switching between distinct flux levels. Six objects exhibit PSD flattening at characteristic timescales which roughly correlate with black hole mass. These timescales are consistent with orbital timescales or freefall accretion timescales. We check for correlations of variability and high-frequency PSD slope with accretion rate, black hole mass, redshift and luminosity. We find that bolometric luminosity is anticorrelated with both variability and steepness of the PSD slope. We do not find evidence of the linear rms-flux relationships or lognormal flux distributions found in X-ray AGN light curves, indicating that reprocessing is not a significant contributor to optical variability at the 0.1-10% level.Comment: 39 pages including 2 appendices. Accepted for Publication in the Astrophysical Journal, with higher resolution figure
    corecore