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Outline

Motivation for modeling

Model description

Temperature distribution in the film irradiated uniformly or
non-uniformly in the plane of the film

3D Evolution equation for the film height

The 2D approximation

Case of uniform irradiation: Stability analysis of the initial
planar state of the film
Uniform or non-uniform irradiation: Computations of the
nonlinear evolution of the film towards rupture

Summary and future work
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Snapshots from the experiments (Y. Kaganovskii et al.,
JAP 100, 044317 (2006)

Figure:
Left: Micrographs of 1D and 2D optical interference gratings created on
a Au film of 18 nm thickness. (a) “two-beam” and (b) “four-beam”
gratings.
Right: AFM image of 8 nm Au film after two-beam interference
irradiation. Note that film material accumulates in cold regions.
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Problem geometry

L

Laser Beam

H

Metallic Film
0

H
sx

z Substratey

Major physical factors contributing to pattern formation through
film dewetting:

Pulsed laser irradiation with or without spatial interference

Capillary fluid flow (minimization of the surface area at given
fluid volume)

Thermocapillary fluid flow arising due to temperature
dependence of the surface tension

Long-range intermolecular (van der Waals) forces driving film
rupture
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Physical assumptions

Film is in the molten (liquid) state at all times (between
pulses the film cools down to T > Tsolidification).

Metallic melt is an incompressible Newtonian liquid.

Surface tension is a linear function of the temperature

σ̃ = σ̃m − γ̃
(

T̃ − T̃m

)
, T̃ > T̃m, γ̃ > 0

H/L = ε� 1→ longwave (lubrication) approximation
possible.

Substrate is thin, Hs ∼ H.
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Governing PDEs

The momentum equation

ρ(ṽt̃ + (ṽ · ∇̃)ṽ) = ∇̃ · Ω̃ + ρg̃, (1)

The continuity equation

∇̃ · ṽ = 0, (2)

The energy equation

ρcp

(
T̃t̃ + ṽ · ∇̃T̃

)
= κ∇̃2T̃ + τ̃ij

∂ũi

∂x̃j
+ Q̃, (3)

where

Q̃ =
δI (1− R(h̃))

2
f (x̃ , ỹ , t̃) exp (δ(z̃ − h̃)) (Bouguer’s law)

(0 ≤ R(h̃) < 1 : nonlinear reflectivity)
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Boundary conditions (I)

At the free surface:

(i) The normal and shear stress balances;

n · Ω̃ · n = −σ̃∇ · n + Π̃,

t · Ω̃ · n = t · ∇σ̃, n =

(
−h̃x̃ ,−h̃ỹ , 1

)
√

1 + h̃2
x̃ + h̃2

ỹ

,

where Π̃ = (Ã/6π)h̃−3 + B̃h̃−2 is the disjoining pressure,

(ii) The kinematic condition:
w̃ = h̃t̃ + ũh̃x̃ + ṽ h̃ỹ

(iii) Newton’s law of cooling:

κT̃z̃ = −αh

(
T̃ − T̃a

)
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Boundary conditions (II)

At the film-substrate interface:

No-slip: ũ = 0, ṽ = 0

No-penetration: w̃ = 0

Continuity of temperature and thermal flux:

T̃ = θ̃, κT̃z̃ = κs θ̃z̃ , (4)

where θ̃ is the temperature field in the substrate, which is
obtained by solving the heat conduction equation

ρscps θ̃t̃ = κs∇̃2θ̃ + Q̃ (5)

given R(h̃) = 0 in the substrate and the boundary condition
z̃ = −Hs : θ̃ = T̃s
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Dimensionless parameters
Dimensionless group Definition Typical values
Scaling parameter (ε) H/L 0.01
Reynolds number (Re) ρUH/µ 1
Brinkman number (Br) µU2/HI 0.11
Peclet number (Pe) ρcpUH/κ 0.019
Capillary number (C ) µU/σ 0.1184
Gravity parameter (G ) ερgH2/µU 3.93 ∗ 10−13

Biot number (β) αhH/κ 10−6

Surface tension (σm) εσ̃m/µU 0.084
Marangoni number (M) εIH γ̃/2µUκ 1.125 ∗ 10−5

Hamaker constant (A) εÃ/6πµUH2 3.37 ∗ 10−5

Hamaker constant (B) εB̃/µUH 1.17 ∗ 10−6

Melting temperature (Tm) κT̃m/IH 1768

Ambient temperature (Ta) κT̃a/IH 300

Substrate temperature (Ts) κT̃s/IH 1900
Optical thickness (D) δH 1
Substrate thickness (hs) Hs/H 1
Ratio of thermal
conductivities (Γ) κs/κ 1.3 ∗ 10−2

Pre-factor, reflectivity function r0 0.44
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Temperature distribution (I)

Dimensionless energy
equation: (note that ε(= H/L), Pe, Br � 1) !

εPe (Tt + uTx + vTy + wTz ) =

Tzz + ε2 (Txx + Tyy ) + (D/2)(1− R(h)) exp (D(z − h))f (x , y , t)

+ε2Br
(
u2

x + u2
y + v 2

x + v 2
y + w 2

z

)
+Br

(
u2

z + v 2
z

)
+ ε4Br

(
w 2

x + w 2
y

)
. (6)

Keeping dominant terms only:

Tzz + (D/2)(1− R(h)) exp (D(z − h))f (x , y , t) = 0, (7)

θzz + (D/2) exp (D(z − h))f (x , y , t) = 0 (8)

z = h : Tz = −β(T − Ta), (9)

z = 0 : T = θ, Tz = Γθz , (10)

z = −hs : θ = Ts . (11)
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Temperature distribution (II)
Approximate solution at the film surface:

T (h) ≡ T (x , y , h, t) = Ts − F (h,D,Υ)(1− R(h))f (x , y , t) +

(Υ + h) (F (h,D,Υ)(1− R(h))f (x , y , t) + Ta − Ts)β.

(12)

This has been linearized in β (β ∼ 10−6 - surface Biot number).

Remark 1: Nonuniformity in the plane of the film enters through
f (x , y , t).

Remark 2: In the (complicated) expression for F (h,D,Υ):
D = δH, Υ = hs/Γ.
D << 1: radiation passes through the film - film is transparent
D >> 1: radiation is concentrated near the film surface - film is
opaque

Remark 3: We use R(h) = r0 (1− exp (−ar h)) as suggested by R.
Kalyanaraman et al., PRB 75, 235439 (2007)
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Temperature distribution (III)
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Figure: Surface temperature when beam is uniform in t but nonuniform in
x , y (periodic): f ≡ f (x , y) = 1 + 0.1 cos(4π(x − 1/2)) cos(4π(y − 1/2))
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Figure: Plot of the maximum dimensional film temperature vs. film
height. Dot curve: R(h) = 0; solid curve: R(h) 6= 0.
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The 2D evolution equation for the film height h(x , t)

ht =
∂

∂x

[
−(ε3C−1/3)h3hxxx + (G/3)h3hx −

(
Ah−1 − 2B/3

)
hx

+Mβ(Ta − Ts)h2hx

+ {MF1(h,D,Υ)(1− R(h))

+MR ′(h)F (h,D,Υ)

−Mβ(h + Υ)R ′(h)F (h,D,Υ)

+Mβ(1− R(h)) (F (h,D,Υ)− (h + Υ)F1(h,D,Υ))}
∗f (x , y , t)h2hx ].

(13)
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Linear stability analysis of the initial planar state of the
film (I)

Assume f = 1, h = 1 + ξ(x , t) = 1 + eωt cos kx and linearize Eq.
(13) in ξ:

ω(k) = −G

3
k2 − Ĉ

3
k4 + (A− 2B

3
)k2 −Mβ(Ta − Ts)k2

+MR ′F (−1 + β(1 + Υ))k2

+M(1− R) (−F1 − β (F − (1 + Υ)F1)) k2.

(14)

h = 1 : Dimensionless film height at t = 0
ξ(x , t) : Small perturbation
ω : Growth rate of the perturbation
k : Wavenumber of the perturbation (wavelength = 2π/k)
R,R ′,F ,F1 are evaluated at h = 1
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Linear stability analysis (II)
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Figure: Variation of ω with k : The dash-dot curve shows ω calculated
without the term containing the effect of the heat source in Eq. (14), the
solid curve shows ω calculated with all terms included.

0 0.05 0.11
0

0.5

1

D

10
4 ω m

ax

0.11 2 4 6 8 10
0

0.5

1

D

10
4 ω m

ax

Figure: Variation of ωmax with D. Dot curve: R(h) = 0; solid curve:
R(h) 6= 0. Remark: The inclusion of reflectivity reduces the heat
generation in the film, thus reducing the stabilization.

The uniformly heated film is completely stable against small
perturbations in some interval of the optical thickness parameter
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Linear stability analysis (III)
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Figure: Neutral stability curves (ω = 0) for various values of D. R 6= 0
(left), R = 0 (right). Below the curve the film is unstable, above - stable.

Stabilization is the maximum in films with D ∼ 1, and minimum in
films with D � 1 or D � 1.
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Numerical simulation of a nonlinear evolution of the film (I)

Single laser beam with uniform spatio-temporal power intensity
distribution (f = 1):
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Figure: Profile of the film height (left), and the evolution of the
minimum point on the film surface (right).

Rupture is spatially periodic with the wavelength of the fastest
growing perturbation. Rupture time T̃r ≈ 0.9 ms (depends on the
amplitude of the initial film height).
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Numerical simulation of a nonlinear evolution of the film
(II)

Static two-beam interference:
f ≡ f (x) = 1 + 0.99 cos(0.157(x − π

2.2 ))

0 5 10 15 20

0

0.5

1

1.5

2

 x

  h

0 20 40 60 80

0

0.5

1

1.5

2

 x

 h

0 20 40 60 80

0

0.5

1

1.5

2

  x

 h

Laser beam

Laser beam

Laser beam

Figure: Top row, left: H = 10 nm, 8 wavelengths; Top row, right:
H = 10 nm, 28 wavelengths; Bottom row: H = 15 nm, 28 wavelengths.

(Note: 2π/0.157 = 40 = `: distance between two neighboring
interference fringes)
The spatial distribution of particles follows the spatial periodicity
of the interference imprint. Rupture time T̃r ≈ 0.6 ms.
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Summary

Developed a mathematical model describing the dynamics of a
molten, laser-irradiated thin film, including the following
major effects:

fluid flow
heat conduction in the film and in the substrate
volumetric heat absorption
nonlinear reflectivity
spatiotemporal nonuniformity of irradiation
temperature dependence of the surface tension (Marangoni)
long-range intermolecular attraction to the substrate (van der
Waals)

Derived the surface evolution PDE in the lubrication
approximation.
Studied the 2D surface evolution PDE by means of the linear
stability analysis and numerical simulations:

Analytically investigated the stabilizing and destabilizing
effects of various system parameters
Numerically investigated impacts of the different modes of
irradiation
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Future Work

3D stability analysis

Simulations of the nonlinear dynamics in 3D

Development of the adaptive grid methods in 2D and 3D to
compute accurate statistics of structures
ordering/distributions

Modeling of film solidification with simultaneous dewetting
during the cooling phase

Thanks to: Dr. Agegnehu A. Atena

Published in: A. Atena and M. Khenner, “Thermocapillary effects
in driven dewetting and self-assembly of pulsed laser-irradiated
metallic films”, Phys. Rev. B 80, 075402 (2009)
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