43 research outputs found

    Light scalar production from Higgs bosons and FASER 2

    Get PDF
    Theoretical Physic

    The present and future status of heavy neutral leptons

    Get PDF
    The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios

    Observation of Collider Muon Neutrinos with the SND@LHC Experiment

    Get PDF
    We report the direct observation of muon neutrino interactions with the SND@LHC detector at the Large Hadron Collider. A dataset of proton-proton collisions at √ s = 13.6 TeV collected by SND@LHC in 2022 is used, corresponding to an integrated luminosity of 36.8 fb − 1 . The search is based on information from the active electronic components of the SND@LHC detector, which covers the pseudorapidity region of 7.2 < η < 8.4 , inaccessible to the other experiments at the collider. Muon neutrino candidates are identified through their charged-current interaction topology, with a track propagating through the entire length of the muon detector. After selection cuts, 8 Îœ ÎŒ interaction candidate events remain with an estimated background of 0.086 events, yielding a significance of about 7 standard deviations for the observed Îœ ÎŒ signal

    SND@LHC: The Scattering and Neutrino Detector at the LHC

    Get PDF
    SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of 7.2<η<8.4{7.2 < \eta < 8.4}. The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic trackers, also acting as an electromagnetic calorimeter, and followed by a hadronic calorimeter and a muon identification system. The detector is able to distinguish interactions of all three neutrino flavours, which allows probing the physics of heavy flavour production at the LHC in the very forward region. This region is of particular interest for future circular colliders and for very high energy astrophysical neutrino experiments. The detector is also able to search for the scattering of Feebly Interacting Particles. In its first phase, the detector will operate throughout LHC Run 3 and collect a total of 250 fb−1\text{fb}^{-1}

    The SHiP experiment at the proposed CERN SPS Beam Dump Facility

    Get PDF
    The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end

    Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target

    Get PDF
    The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011 muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27±0.07) × 1011 protons on target was recorded. This amounts to approximatively 1% of a SHiP spill

    Fast simulation of muons produced at the SHiP experiment using generative adversarial networks

    Get PDF
    This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of Script O(106). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution

    Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment

    Get PDF
    In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved

    The experimental facility for the Search for Hidden Particles at the CERN SPS

    Get PDF
    The International School for Advanced Studies (SISSA) logo The International School for Advanced Studies (SISSA) logo The following article is OPEN ACCESS The experimental facility for the Search for Hidden Particles at the CERN SPS C. Ahdida44, R. Albanese14,a, A. Alexandrov14, A. Anokhina39, S. Aoki18, G. Arduini44, E. Atkin38, N. Azorskiy29, J.J. Back54, A. Bagulya32Show full author list Published 25 March 2019 ‱ © 2019 CERN Journal of Instrumentation, Volume 14, March 2019 Download Article PDF References Download PDF 543 Total downloads 7 7 total citations on Dimensions. Article has an altmetric score of 1 Turn on MathJax Share this article Share this content via email Share on Facebook Share on Twitter Share on Google+ Share on Mendeley Article information Abstract The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1–3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to Script O(10) GeV/c2 in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background

    BDF/SHiP at the ECN3 high-intensity beam facility

    No full text
    The BDF/SHiP collaboration has proposed a general-purpose intensity-frontier experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for feebly interacting GeV-scale particles and to perform measurements in neutrino physics. CERN is uniquely suited for this programme owing to the proton energy and yield available at the SPS. This puts BDF/SHiP in a unique position worldwide to make a breakthrough in a theoretically and experimentally attractive range of the FIP parameter space that is not accessible to other experiments. The existing ECN3 experimental facility makes it possible to implement BDF at a fraction of the cost of the original proposal, without compromising on the physics scope and the physics reach. SHiP has demonstrated the feasibility to construct a large-scale, versatile discovery experiment capable of coping with 4×10194\times 10^{19} protons per year at 400 GeV/c and ensuring a < 1-event background for the FIP decay search even up to 6×10206\times 10^{20} PoT. With the feasibility of the facility and the detector proven, the BDF/SHiP collaboration are ready to proceed with the TDR studies and commence implementation in CERN’s Long Shutdown 3. During the operational lifetime of BDF/SHiP, several prominent opportunities for upgrades and extensions are open, such as the use of a LAr TPC, a synergistic tau flavour violation experiment, and exploiting the secondary mixed-field radiation from the proton target for nuclear and astrophysics, as well as for material testing
    corecore