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1 Introduction: scalar portal and FASER experiment

The Standard Model of particle physics (SM) is extremely successful in explaining accelera-

tor data. Yet it fails to explain several observed phenomena: neutrino masses, dark matter

and baryon asymmetry of the Universe. To explain these phenomena, we need to postu-

late new particles that should not nevertheless spoil extremely successful Standard Model

predictions. These new hypothetical particles can be heavy, thus evading detection at√
s = 13 TeV collision energy of the LHC. Such particles would induce higher-dimensional

(non-renormalizable) interactions with SM fields, the signatures of such operators are being

searched at the LHC (see e.g. [1] for a review).

Alternatively, new particles can be light yet have very weak couplings to the Standard

Model — feebly interacting particles, or FIPs. In this case, their interaction with the SM

can be governed even by relevant (dimensions 3 and 4) operators with small couplings.

Such models are generically called portals because trough such operators FIPs can mediate

interactions with some “dark sectors” — other new particles that otherwise are inaccessible.

In this paper, we consider the most general form of the scalar (or Higgs) portal [2–5]

that has been the subject of active analysis in the recent years, see e.g. [6–9] and refs.
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therein. Namely, we introduce a scalar particle S that carries no Standard Model charges

and interacts with the Higgs doublet H via

L = LSM +
1

2
(∂µS)2 + (α1S + α2S

2)

(
H†H − v2

2

)
−
m2
S

2
S2, (1.1)

where v is the Higgs VEV and the model is parametrized by three new constants: α1, α2

and the scalar mass mS . After electroweak symmetry breaking, the SHH interaction (1.1)

leads to a quadratic mixing between S and the Higgs boson h. Transforming the Higgs field

into the mass basis, h→ h+θS (θ � 1), one arrives at the following Lagrangian, describing

interactions of the new boson S with the SM fermions, intermediate vector bosons and the

Higgs boson:

LSSM = −θ
mf

v
Sf̄f + 2θ

m2
W

v
SW+W− + θ

m2
Z

v
SZ2 +

α

2
S2h+ . . . (1.2)

where . . . denote quartic and higher terms. The interactions (1.2) also mediate effective

couplings of the scalar to photons, gluons, and flavor changing quark operators [10], open-

ing many production channels at both LHC and Intensity Frontier experiments. The phe-

nomenology of light GeV-like scalars has been worked out in [11–21] as well as in [22–31]

in the context of the light Higgs boson. Most of these works concentrated on the La-

grangian with α1 = 0 in which case the couplings θ and α in (1.2) become related.1 In

this work we consider α1 6= 0. Phenomenologically, this allows to decouple decay channels

(controlled by θ) and production channels (controlled by α), cf. [33] where phenomenology

of such a model is also discussed. As we will see below, the parameter α is only weakly

constrained by the invisible Higgs decays [34, 35] and can be quite sizeable (if unrelated

to θ). As a result, the production via h→ SS process becomes possible and is operational

for scalar masses up to mh/2 which allows to significantly extend the sensitivity reach of

the LHC-based experiments.

We note that the production channel via the off-shell Higgs bosons (e.g. coming from

neutral meson decays, such as Bs → SS for 2mS < mB) starts to dominate over production

via flavour changing mixing for θ2 < 10−9÷10−10, see [10]. We will not consider this effect

in the current work, mostly concentrating on mS & 5 GeV.

Searches for light scalars have been previously performed by CHARM [36], KTeV [37],

E949 [38, 39], Belle [40, 41], BaBar [42], LHCb [43, 44], CMS [34, 45, 46] and ATLAS [35,

47–49] experiments. Significant progress in searching for light scalars can be achieved by

the proposed and planned intensity-frontier experiments such as SHiP [8, 50, 51], CODEX-

b [52], MATHUSLA [16, 51, 53, 54], FASER [55, 56], SeaQuest [57], NA62 [58–60] and

a number of other experiments (see [61] for an overview). The summary of the current

experimental status of the light scalar searches is provided in the Physics Beyond Collider

report [61].

1Alternative class of models has super-renormalizable interaction only between the Higgs boson and the

scalar (α2 = 0), see [32] and refs. therein. In this case, of course, there is no S2h term in the Lagrangian (1.2).
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Figure 1. Left panel: branching ratios of the decays of a scalar S as a function of its mass. We

use perturbative decays into quarks and gluons (see [10] for details). Right panel: the lifetime of a

scalar S as a function of its mass for the mixing angle θ2 = 1. The lifetime is obtained using decays

into quarks and gluons (and τ ’s) within the framework of perturbative QCD.

1.1 Existing bounds

The up to date experimental constraints in the mS-θ plane can be found in the scalar portal

section of [61]. The strongest experimental constraints on the parameter α come from the

invisible Higgs decay. In the Standard Model the decay h → ZZ → 4ν has the branching

ratio O(10−3). Current limits on the Higgs to invisible are BRinv < 0.19 at 95% CL [34].

Future searches at LHC Run 3 and at the High-Luminosity (HL) LHC (HL-LHC, Run 4)

are projected to have sensitivity at the level BRinv ∼ 0.05 — 0.15 at 95% CL [62] maybe

going all the way to a few percents [63]. In what follows we will assume that the branching

ratio BRinv is saturated by the h→ SS decay. Using

Γh→SS =
α2

32πmh

√
1−

4m2
S

m2
h

(1.3)

we obtain the corresponding value of α2 ∼ 5 GeV2 for mS � mh.

Apart from the invisible Higgs decays, the ATLAS and CMS collaborations have pre-

viously performed studies of the h → SS → 4b, h → SS → 2b2µ, h → SS → 2τ2µ,

h→ SS → 2τ2b, etc. [45, 46, 48, 49, 64, 65] for the light (pseudo)scalar in the mass rang-

ing between O(10) GeV and mh/2. The obtained constraints, however, do not restrict the

parameters relevant for the FASER 2 experiment as they search for prompt decays of the

scalars, while in our model the cτS ∼ O(100) meters.

1.2 The FASER experiment

FASER (ForwArd Search ExpeRiment, figure 2), is an Intensity Frontier experiment dedi-

cated to searching for light, extremely weakly-interacting particles that may be produced

in the LHC’s high-energy collisions in the far-forward region and then travel long distances

without interacting [55, 66–69]. FASER is approved to collect data in 2021–2023 during

the LHC Run 3. If FASER is successful, FASER 2, a much larger successor, could be

– 3 –
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Figure 2. The scheme of the FASER experiment. The figure from [66].

Phase L, fb−1 L [m] R [m] ldet [m] θfaser [rad]

FASER 150 480 0.1 1.5 2.1 · 10−4

FASER 2 3000 480 1 5 2.1 · 10−3

FASER 2

(alternative configuration)

3000 480 1.5 5 3.1 · 10−3

Table 1. Parameters of the FASER experiment. Prototype detector (FASER) is approved to collect

data during the LHC Run 3. FASER 2 is planned for HL-LHC phase, but its configuration is not

finalized yet. In the third line, we propose an alternative configuration of FASER 2 that would

allow drastically increasing its reach towards the scalar portal. L is the integrated luminosity of the

corresponding LHC run. L is the distance between the ATLAS interaction point and the entrance

of the FASER decay vessel. R is the radius of the decay vessel. ldet is the length of the detector

and θFASER = R/L is the angle, so that the solid angle subtended by the detector is given by

Ωfaser = πθ2faser. For our investigation, we assume that the decay vessel is a cylinder, centered

around the beam axis.

constructed in Long Shutdown 3 and collect data during the High-Luminosity Run 4 in

2026–2035. The relevant parameters of FASER and FASER 2 are shown in table 1. We

also list the alternative configuration of FASER 2 which we will use for comparison in

this work.

While the design of the first phase is fixed, the FASER 2 is not finalized yet. We

demonstrate therefore how the parameters of the future FASER 2 experiment will affect

its sensitivity.

The paper is organized as follows:

• In section 2 we estimate the number of decay events in the FASER detectors. This

section allows for easy cross-check of our main results and gives the feeling of the

main factors that affect the sensitivity.

• In section 3 we outline our estimates based on which the conclusion is drawn. We

– 4 –
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also demonstrate that an increase of the geometric acceptance by the factor ∼ 2 (e.g.

via increase of the radius of the decay vessel of FASER 2 from 1 m to 1.5 m) would

allow a wide region of the parameter space to be probed.

• Appendices provide some details of our computations that would permit the inter-

ested reader to reproduce them.

2 Scalars from Higgs bosons

2.1 Naive estimate: what can be expected?

Before running MC simulations (and to have a way to verify the simulation results) we

start with analytic estimates of the sensitivity of FASER 2. The number of detected events

is given by the following formula [51]:

Ndet = NS × εgeom × Pdecay × εdet. (2.1)

Here, NS is the number of scalars produced at the LHC experiment; in our case NS =

2Nh BR(h → SS), Nh — the number of produced Higgs bosons, εgeom is the geometric

acceptance — the fraction of scalars whose trajectories intersect the decay volume, so that

they could decay inside it. The decay probability is given by the well-known formula

Pdecay(ldecay) = e−L/ldecay − e−(L+ldet)/ldecay , (2.2)

where L is the distance from the interaction point to the entrance of the fiducial volume,

ldet is the detector length, and ldecay = cτSβSγS is the decay length. Finally, εdet ≤ 1 is

the detection efficiency — a fraction of all decays inside the decay volume for which the

decay products could be detected. In the absence of detector simulations, we optimistically

assume detector efficiency of FASER to be εdet = 1.

The high luminosity LHC phase is expected to deliver 1.7 · 108 Higgs bosons (the

Higgs boson production cross-section at
√
s = 13 TeV is σh ≈ 55 pb [70], going to 60 pb at

14 TeV). Further, we assume the fiducial Higgs decay to scalars equal to the lower bound

of HL-LHC reach [62]:

BRfid(h→ SS) = 0.05. (2.3)

For the initial estimate of the number of produced scalars, we consider these Higgs

bosons decaying at rest. In this case, we estimate the number of scalars flying into the

solid angle of FASER 2 as

εnaive
geom =

Ωfaser

4π
≈ 1.1× 10−6, (2.4)

where Ωfaser = πθ2
faser, see table 1. Plugging in the numbers we get Nnaive

S = 2Nh ×
εnaive
geom ×BRinv ≈ 33 scalars. As most of the Higgs bosons fly along the beam axis, eq. (2.4)

is a strong underestimate and we should expect a lot of scalars flying through the FASER

fiducial volume.

– 5 –
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Figure 3. Left panel : A probability of the scalar decay for FASER 2 as a function of a scalar’s decay

length ldecay. Right panel : the distribution function fpL = 1
Nh

dNh

dpL
of Higgs bosons by longitudinal

momentum pL. The simulations are based on MadGraph5 aMCNLO [71] and following [72]. See

appendix A for details.

For ldet � L (as it is the case for FASER/FASER 2) the probability of decay (2.2)

reaches its maximum for ldecay ≈ L. The maximum is purely geometric, not related to the

parameters of the scalar S and numerically it is equal to

P
(max)
decay '

ldet

L
e−1 ≈ 3.8 · 10−3, (2.5)

see also figure 3.2 Multiplying eqs. (2.4) and (2.5) we find O(0.1) detectable events. Given

that this was a (strong) underestimate — we see that more careful analysis is needed. It

will proceed as follows:

1. We start by assuming that all Higgs bosons travel along the beam axis, which allows

for a much simplified analytic treatment. Then we comment on the effect of pT
distribution of the Higgs bosons.

2. We determine the realistic geometrical acceptance εgeom � εnaive
geom, since the actual

angular distribution of scalars is peaked in the direction of the FASER detector.

3. Finally, as scalars have non-trivial distribution in energy, for most of the scalars the

decay probability is not equal to the maximal value, thus determining the width of

the sensitivity area in the θ direction for a given mass.

2.2 Geometrical acceptance

Most Higgs bosons are traveling along the beam axis and therefore have pT � pL (see

appendix A). Therefore, we perform the analytic estimates based on the purely longitudinal

distribution of the Higgs bosons fpL ≡ 1
Nh

dNh
dpL

shown in figure 3.

2The independence of the value (2.5) of the mass mS can be understood in the following way. Since the

production of the scalar is independent on the coupling θ2 while the decay length depends on θ2, we can

always adjust it for a fixed mass mS in a way such that ldecay(mS , θ
2) = L. As we demonstrate below the

values of θ2 for masses of interest (from few GeV to mh/2) correspond to the region of the scalar parameter

space that is currently unprobed by existing experiments.

– 6 –
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The angle θS between the scalar and Higgs boson directions in the laboratory frame is

related to the scalar direction in the Higgs rest frame via

tan θS =
1

γh

β′S sin θ′S
β′S cos θ′S + βh

, (2.6)

where

β′S =

√
1−

4m2
S

m2
h

(2.7)

is the velocity of a scalar in the rest frame of the Higgs boson, γh and βh are Higgs boson’s

gamma factor and the velocity in the laboratory frame.3

Based on these considerations, we can calculate the geometric acceptance (once again

assuming that all Higgs bosons fly in the direction of the beam):

εgeom ≈
∫
fpLκ(mS , pL)

Ω(pL)

4π
dpL (2.8)

Here, Ω is the solid angle of FASER 2 available for scalars:

Ω =

{
Ωfaser, θfaser < θmax,

πθ2
max(pL), θfaser > θmax,

(2.9)

with θmax = arctan

[
β
′
S

γh

√
β2
h−β

′2
S

]
if βh > βS and θmax = π otherwise. Finally, the function

κ = |dΩ′/dΩ|, where Ω is the solid angle in the lab frame corresponding to the solid angle

Ω′ in the Higgs rest frame. It defines how collimated is the beam of scalars as compared

to an isotropic distribution. For the details of the derivation of the explicit expression of

κ see appendix 2.2. In the case θ = 0 it becomes

κ(mS , pL) ≈


2γ2h(β

′2
S +β2

h)

β
′2
S

, βh > β
′
S ,

γ2h(β
′
S+βh)2

β
′2
S

, βh < β
′
S

(2.10)

The resulting acceptance (see figure 5, left panel) grows with the mass since the maximal

angle θS decreases; when the mass of the scalar is very close to mh/2, the acceptance

reaches its maximum equal to the fraction of Higgs bosons flying into the direction of the

FASER 2 decay volume, fh→faser. Even for the light scalars the acceptance εgeom ≈ 4 ·10−5

is an order of magnitude larger than the naive estimate (2.4). The reason for this is that

most of the Higgs bosons have large energies, so the resulting angular distribution of scalars

is peaked in the direction of small angles, see figure 4.

With pL distribution only, obviously, fh→faser = 1. To make realistic estimates, we

need to take into account the pT distribution of the Higgs bosons. The fraction fh→faser

3Although two scalars originate from each Higgs decay, the angle between the scalars in the laboratory

frame is larger than θfaser unless mS is very close to mh
2

. In appendix B.2 we provide detailed estimates.

– 7 –



J
H
E
P
0
5
(
2
0
2
0
)
0
4
9

ms = 1 GeV
ms = 30 GeV
ms = 60 GeV

10-4 10-3 10-2 10-1 100
10-2

10-1

100

101

102

θS [rad]

dN
/d
co
s(
θ
S
)

Figure 4. The angular distribution of scalars for different scalar masses. The distribution is

symmetric with respect to π/2 (right vertical axis). The vertical dashed line corresponds to θS =

θfaser2. The estimate is made under the assumption that Higgs bosons fly along the beam axis (see

text for details).
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Figure 5. Left panel : Geometric acceptance of scalars at FASER 2 obtained using pL distribution

of Higgs bosons, see eq. (2.8). Right panel : the distribution function of Higgs bosons by the

longitudinal momentum pL multiplied by the enhancement factor κ (2.10) for the masses of the

scalar mS = 0, 50 and 60 GeV.

under the assumption that pL and pT distributions of Higgs boson are independent is

fh→faser ≈ εmax
geom =

1

2

∞∫
0

fpLdpL

phLθfaser∫
0

fpT dpT ≈ 1.1 · 10−3, (2.11)

where a factor 1/2 comes from the fact that we do not take into account Higgs bosons

that fly in the opposite direction to FASER. This number represents a maximally possible

geometric acceptance.

2.3 Decay of scalars

The decay width and branching S → visible is determined based on the (extended) results

of ref. [10] (see figure 1). For these masses, all major decay channels have > 2 charged

tracks and therefore it is reasonable to assume that BRvisible = 100% and that every decay is

– 8 –
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reconstructable with 100% efficiency. The verification of this assumption requires detailed

studies beyond the scope of this paper.

So far we have kept the decay probability at its maximum (corresponding to ldecay = L).

This condition would give a line in the (mS , θ) plane. To determine the transversal shape of

the sensitivity region, we need to vary θ and take into account the γ factor of the scalar, γS .

The energy of a scalar is proportional to the energy (pL) of the corresponding Higgs boson:

ES =
Eh
2

(1 + β′Sβh cos(θS)) ≈ Eh
2

(1 + β′Sβh), (2.12)

where we have taken into account that the FASER detector is almost co-aligned with the

beam axis and therefore θS ≈ 0 and neglected the pT distribution of the Higgs boson. The

average energy of the scalar is determined by weighting the Higgs distribution fpL with the

function κ, defined in eq. (2.10). In this way, only the energies of scalars flying into the

FASER 2 solid angle are considered. The resulting 〈ES〉 as a function of the scalar mass

is shown in figure 7 (central panel). One can see that the γ factor ranges from O(100) for

small masses down to O(10) for mS ≈ mh/2.

Let us now improve the estimate (2.5) of the maximally possible value of the decay

probability P
(max)
decay . The value (2.5) is obtained using the average energy 〈ES〉. Taking into

account the continuous scalar spectra leads to a decrease of P
(max)
decay . The averaging over

the spectrum can be done using the function κfpL (shown in the right panel of figure 5):

〈P (max)
decay 〉 ≈

∫
κ(mS , pL) · fpL · Pdecay(mS , θ

2, ES)dpL (2.13)

As is demonstrated by figure 5, κ · fpL have similar flat shape for wide range of momenta

for all possible scalar masses. We can always adjust the appropriate θ2 value to maximize

the probability, and independently on the mass we get

〈P (max)
decay 〉 ' 3.2 · 10−3 (2.14)

Substituting this value for the decay probability, as well as the number of Higgs bosons

produced by the fiducial branching ratio (2.3), εgeom (figure 5, left panel) into eq. (2.1),

one can compute the improved analytic estimate for the maximal number of decay events

inside the FASER 2 detector:

N
(max)
events = Nh · BRfid(h→ SS) · εgeom · 〈P (max)

decay 〉 (2.15)

It is shown in figure 6. The behavior of N
(max)
events with the scalar mass is completely deter-

mined by εgeom. Namely, the masses mS . 30 GeV it is a constant of the order of O(1),

while for larger masses increases due to the behavior of the geometric acceptance.

However, these estimates warrant a more detailed sensitivity study using the realistic

distribution of Higgs bosons.

3 Results

We simulated Higgs boson production at the LHC using MadGraph5 aMCNLO [71] and

following [72], see appendix A for details. Using the pL and pT distributions of the Higgs

– 9 –
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Figure 6. The analytic estimate (2.15) for the maximal number of scalar decays in FASER2 decay

volume versus the scalar mass. See text for details.
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Figure 7. Properties of dark scalars flying into the FASER 2 decay volume. Left panel : energy

spectrum of scalars fES
= 1

NS

dNS

dES
for different masses. Middle panel : The average energy of

scalars. Right panel : The geometric acceptance εgeom versus the scalar mass. In the middle and

right panels, the blue lines denote analytic estimates obtained using the Higgs pL spectrum (right

panel in figure 3), while the red lines show the results of more accurate estimates including the pT
distribution of the Higgs bosons (see appendix B.2).

bosons, we derived the energy distribution of scalars fES
= 1

NS

dNS
dES

and computed the

geometric acceptance εgeom, see appendix B.2.

The resulting energy distribution of scalars of particular masses traveling into the solid

angle of FASER 2 is shown in figure 7 (left panel). In the same figure (middle and right

panels) we compare the geometric acceptance and average energy for scalars obtained in

simulations with the analytic prediction from figure 5. The simulation results lie slightly

below the analytic estimate due to the pT distribution of Higgs bosons. The smallness of the

discrepancy is related to the smallness of the ratio 〈pT 〉/〈pL〉 for the Higgs bosons. Next, we

compute the number of scalars traveling through the FASER 2 fiducial volume and estimate

the number of decay events, using eq. (2.1) with the decay probability Pdecay averaged over

the energies of scalars flying in the direction of the experiment. The resulting sensitivity

region is shown in figure 8. We assume background free experiment and therefore determine

the sensitivity as a region that includes at least 2.3 events. With the current configuration

of FASER 2, one can expect to see any events only in the region around 50− 60 GeV. The

green line follows from the analytic estimate (2.1) in which the geometric acceptance and

average energy from figure 7, whereas the blue contours are based on the more accurate

– 10 –
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FASER2 (R = 1 m)
FASER 2 (R = 1.5 m)
MATHUSLA
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10-13

10-11

Scalar mass [GeV]

θ
2

Figure 8. Sensitivity of the FASER 2 to scalars produced in decays of Higgs bosons. Blue solid line

encloses the region where one expects to observe at least 2.3 events, given the current configuration

of the experiment (the radius of the decay vessel R = 1 m). A modest increase of the geometric

acceptance (by changing the radius to R = 1.5 m) allows probing an order-of-magnitude-wide

stripe for all masses (between blue dashed lines). The black solid line shows parameters for which

ldecay = L (used for our analytic estimates). Gray dashed line shows upper and lower regions of the

MATHUSLA200 experiment where similar production from the Higgs bosons is possible (partially

based on [61]). The green line is an analytic estimate, see text for details. Sensitivity estimates

assume the 100% efficiency of the reconstruction of decay products but take into account geometric

acceptance. The branching ratio BR(h→ SS) is taken at the level of 5%.

estimate using the scalar energy spectrum (see appendix B.2). A slight difference between

these estimates is caused by the difference between the value of Pdecay(〈ldecay〉)) and 〈Pdecay〉
where in the former case ldecay is evaluated for 〈ES〉 and in the latter case one averages

Pdecay over the energy distribution.

Our results lead to an important conclusion regarding a configuration of the FASER 2.

Figure 6 shows that the FASER 2 in its current configuration (as shown in table 1) will not

detect any events for mN . 40 GeV (region to the left of the blue solid line). However, a

modest (factor of 2) increase in the geometrical acceptance would allow probing the whole

mass range few GeV . mS . mh/2, as demonstrated by the blue dashed line in figure 8.

This increase can be achieved for example by increasing the radius of the FASER 2 from

1 meter to 1.5 meters, which is allowed by the size of the TI12 tunnel where the experiment

will be located. The angular distribution of scalars is flat for relevant angles, see figure 4,

which provides the desired conclusion.

4 Conclusion

In this work, we presented the analytic estimates for the sensitivity of the FASER 2 ex-

periment for the most general scalar portal model including renormalizable operators only.

The estimates were verified by MadGraph simulations, showing a very good agreement.

– 11 –
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Majority of previous works on the subject [10–14, 17, 19] considered the models of the

scalar where the term α1SH
†H was absent in the Lagrangian (1.1) (assuming a Z2 sym-

metry S → −S). In this case, two scalar couplings θ and α in the effective Lagrangian (1.2)

become related (and should both be small to satisfy bounds from the previous experiments).

However, if cubic and quartic couplings (α1 and α2 in the Lagrangian (1.1)) are in-

dependent and both non-zero, the resulting triple coupling between Higgs and two scalars

can be quite sizeable. Indeed, the main experimental bound on its value is the branching

fraction of the invisible Higgs decay (assuming it is saturated by the h → SS process).

The current bound on the invisible branching ratio BRinv < 0.19 (at 95%CL, [73]). Future

runs of the LHC are expected to probe this branching at the level 0.1 or slightly below.

As a result, for the experimentally admissible values of the parameter α, the pro-

duction of scalars at the LHC from the decays of the Higgs boson (h → SS) dominates

significantly over all other production channels. This makes the production and decay of

a scalar controlled by independent coupling constants. This independence qualitatively

changes the behavior of the sensitivity curves of the LHC-based intensity frontier experi-

ments (MATHUSLA, FASER, CODEX-b). Indeed, normally the sensitivity of the intensity

frontier experiments has a lower bound, defined by the minimal number of events in the

detector, depends both on the production and decay, and an upper bound, defined by the

requirement that new particles should not decay before reaching the detector (the lifetime

gets smaller with mass). Their intersection often defines the maximal mass of scalar that

can be probed [51]. In our case, the maximal mass is determined solely by the kinematics

(mS ≤ mh/2). However, as the geometrical acceptance drops with the decrease of the

scalar’s mass (see left panel of figure 5) while the number of produced scalars is mass-

independent, for a given geometry there can be a minimal mass that can be probed (cf.

the blue solid line in figure 8).

For our analysis, we assumed that the invisible Higgs decay has a significant contribu-

tion from h→ SS and, as an example, adopted a fiducial branching fraction BR(h→ SS)

at the level of 5%. We show that in this case, even if the HL-LHC does not discover invisible

Higgs decay, the FASER 2 experiment is capable of discovering dark scalars with masses

of 40 GeV . mS . mh/2. Moreover, if its geometric acceptance is increased by a factor

∼ 2, FASER 2 will have sensitivity for all scalar masses from mh/2 down to a few GeV

and even lower, where the production from B mesons starts to contribute. This can be

achieved, for example, by scaling the radius of the detector from 1 meter to 1.5 meters.

Another possibility would be to put the detector closer to the interaction point, in

which case the number of particles, counterintuitively, increases as L3 (L2 dependence

comes from the increase of the solid angle ΩFASER and an extra factor comes from the

L-dependence on the maximal decay probability, eq. (2.5)). The latter effect is due to

the independence of the decay probability on the coupling α controlling production and

is specific for the model in question. As suggested e.g. in the original FASER paper [55],

another possibility would be to put the detector at 150 meters behind the TAN neutral

particle absorber [74]. Such a position, however, would suffer from a high background

and therefore our estimates (performed under the background-free assumption) will not

be valid. Another option suggested in [55] does not increase acceptance. Indeed, it was

– 12 –
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Figure 9. Left panel : a comparison of pT spectra of Higgs bosons obtained in our simulations (solid

blue line) with the spectra from [72] (dashed blue line) and [75] (red line). See text for details.

Right panel : the pT distribution of Higgs bosons for different domains of |pL|.

proposed to use a hollow cylinder around the beam axis, with an inner angle around

1 mrad (the size being dictated by the position of TAS quadrupole magnets shield) and the

outer size of about 2 mrad. Such a detector would have a factor of a few lower geometric

acceptance. Of course, such a detector would be too complicated and cumbersome, so its

realistic version, occupying only a small sector in the azimuthal angle ∆φ, would have its

geometric acceptance further reduced by ∆φ/2π.
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A Higgs boson distribution

For our estimate we used a number of Higgs bosons for HL LHC Nh = 1.7 · 108. To find

Higgs bosons momentum distribution, we simulated Higgs boson production at the LHC

using MadGraph5 aMCNLO [71] and following [72]. Using the generated events, we find

that the pT distribution depends only weakly on pL, see figure 9. Therefore, the correlations

between pT and pL distributions can be neglected, and the double distribution of Higgs

bosons in pT , pL can be approximated by the product of pT and pL single distributions.

We validated our simulation by comparing the pT spectrum of the Higgs bosons with

the theoretical spectra from [72] and [75], in which the spectrum was obtained using

POWHEG, see figure 9. Our results agree well with [72], while there is a discrepancy

with [75] in the domain of high pT . However, the discrepancy is not significant; in particu-

lar, the amounts of Higgs bosons flying in the direction of FASER 2 experiment calculated

using our distribution and the distribution from [75] differs by no more than 30%.
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For each simulated event we calculated κ(θh, γh) and the energy ES(θh, γh) of a scalar

traveling into the solid angle of FASER 2. The 〈κ〉 is then obtained as the arithmetic mean,

while the energy distribution is obtained as the weighted distribution, where the energy

ES(θh, γh) has the corresponding weight κ(θh, γh).

B Distributions

B.1 Kinematics in laboratory frame

Consider the relation between the laboratory frame angle θS and the rest frame angle θ
′
S :

tan(θS) =
1

γh

β
′
S sin(θ

′
S)

β
′
S cos(θ

′
S) + βh

(B.1)

Let us introduce two functions

f±(θS) = −
βhγ

2
h tan2(θS)±

√
β

′2
S + (β

′2
S − β2

h)γ2
h tan2(θS)

β
′
S(1 + γ2

h tan2(θS))
, (B.2)

representing the solution of eq. (B.1) in terms of cos(θ
′
S) for given parameters βh, βS . In or-

der to express cos(θ
′
S) from eq. (B.1), we find first the values of θS where the functions (B.2)

become complex. These are θS,max < θS < π − θS,max, defined as

θS,max = arctan

 β
′
S

γh

√
β2
h − β

′2
S

 (B.3)

They are always real as long as βh/β
′
S < 1. Next, we can construct the physical solution

cos(θ
′
S) requiring the solutions (B.2) to cover all the domain of the definition of the cosine,

cos(θ
′
S) ∈ [−1, 1]. For βh/β

′
S < 1 it is

cos(θ
′
S) =

{
f−(θS), 0 < θS < π/2,

f+(θS), π/2 < θS < π

= −
βhγ

2
h sin2(θS)− cos(θS)

√
β

′2
S cos2(θS) + (β

′2
S − β2

h)γ2
h sin2(θS)

β
′
S cos2(θS) + γ2

h sin2(θS)
(B.4)

For βh > β
′
S both the solutions f± exist in the domain θS < θS,max.

Let us now find the function κ. By the definition, κ = |d cos(θ
′
S)/d cos(θS)|. In the case

βh < β
′
S it is simply given by the derivative of (B.4), while for the case βh > β

′
S it reads

κ =

∣∣∣∣ df+(θS)

d cos(θS)

∣∣∣∣+

∣∣∣∣ df−(θS)

d cos(θS)

∣∣∣∣ =
dg(θS)

d cos(θS)
, (B.5)

where

g(θS) =

∣∣∣∣∣∣2 cos(θS)

√
β

′2
S cos2(θS) + (β

′2
S − β2

h)γ2
h sin2(θS)

β
′
S(cos2(θS) + γ2

h sin2(θS))

∣∣∣∣∣∣ (B.6)

In particular, in the domain θS � θS,max for βh > β
′
S we have

g(θS) ≈ 2−
θ2
S(β2

h + β
′2
S )

β
′2
S

⇒ κ ≈
2γ2

h(β
′2
S + β2

h)

β
′2
S

(B.7)
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Figure 10. The minimal angle (B.9) between two scalars produced in the decay H → SS versus

the scalar mass mS for particular values of the γ factor of the Higgs boson.

B.2 Distribution of scalars over energies and polar angles

The double differential distribution fES ,θS of scalars produced in the decay h → SS has

been calculated in the following way. Consider a differential branching ratio for a Higgs

bosons flying in the direction θh, φh:

dBr(h→ SS) =
1

2

1

(2π)2

|M|2

2Γh,restmh

d3pS1

2ES1

∫
d3pS2

2ES2

δ4(ph − pS1 − pS2), (B.8)

whereM is the invariant matrix element of the process h→ SS (independent on momenta

for 1→ 2 process), pS1,2 are momenta of two produced scalars.

Two scalars are indistinguishable (extra factor 1/2 in eq. (B.8)) and after phase space

integration we would lose the information about the relative distribution of the two scalars.

In particular we cannot trace whether one or both scalars simultaneously could enter the

FASER 2 decay volume which could lead to underestimate of the number of events by

as much as a factor of 2. However, because of the small angular size of the FASER 2

experiment, the fraction of events with two Ss flying into the detector’s fiducial volume is

negligibly small. Indeed, the minimal angle θ12,min between two scalars produced in the

decay h→ SS is given by

sin(θ12,min) =
2m2

hβh

√
γ2
h − 1

m2
hγ

2
h − 4m2

S

(B.9)

It is larger than θfaser ≈ 2.6 · 10−3 for all values of γh reachable at the LHC for mS .
62 GeV, see figure 10. After the integration over pS2 , replacing S1 → S we get

dBr(h→ SS) =
d3pS

8(2π)2

|M|2

4Γh,restmhES
δ(m2

h − 2ESEh + 2|pS ||ph| cos(α)), (B.10)

where

cos(α) = cos(φh) sin(θh) sin(θS) + cos(θh) cos(θS) (B.11)

is the angle between the Higgs boson and the scalar. Rewriting the scalar phase space

volume as d3pS = sin(θS)dθSES

√
E2
S −m2

SdESdφS , for the distribution in the energy and
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polar angle is given by

fθS ,ES
=

1

BRh→SS

dBR(h→ SS)

dθSdES

= 2π
sin(θS)ES

√
E2
S −m2

S

Br(h→ SS)

∫
dφh
2π

dEhdθhfθh,Eh

d3Br(h→ SS)

d3pS

=
mh

√
E2
S −m2

S

|pS,rest|
sin(θS)I[θS , ES ], (B.12)

where fθh,Eh
is the double differential distribution of the Higgs bosons obtained in simula-

tions, and

I[θS , ES ] =
1

2π

∫
dφhdθhdEhfθh,Eh

δ(m2
h − 2ESEh + 2|pS ||ph| cos(α)) (B.13)

Having the distribution function (B.12), the number of events may be determined as

Ndet = NS · BR(h→ SS) ·
∫
dθSdESfθS ,ES

Pdecay(ES) (B.14)
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