1,264 research outputs found

    An automated archival VLA transients survey

    Full text link
    In this paper we present the results of a survey for radio transients using data obtained from the Very Large Array archive. We have reduced, using a pipeline procedure, 5037 observations of the most common pointings - i.e. the calibrator fields. These fields typically contain a relatively bright point source and are used to calibrate `target' observations: they are therefore rarely imaged themselves. The observations used span a time range ~ 1984 - 2008 and consist of eight different pointings, three different frequencies (8.4, 4.8 and 1.4 GHz) and have a total observing time of 435 hours. We have searched for transient and variable radio sources within these observations using components from the prototype LOFAR transient detection system. In this paper we present the methodology for reducing large volumes of Very Large Array data; and we also present a brief overview of the prototype LOFAR transient detection algorithms. No radio transients were detected in this survey, therefore we place an upper limit on the snapshot rate of GHz frequency transients > 8.0 mJy to rho less than or equal to 0.032 deg^-2 that have typical timescales 4.3 to 45.3 days. We compare and contrast our upper limit with the snapshot rates - derived from either detections or non-detections of transient and variable radio sources - reported in the literature. When compared with the current Log N - Log S distribution formed from previous surveys, we show that our upper limit is consistent with the observed population. Current and future radio transient surveys will hopefully further constrain these statistics, and potentially discover dominant transient source populations. In this paper we also briefly explore the current transient commissioning observations with LOFAR, and the impact they will make on the field.Comment: Accepted for publication in MNRA

    The JCMT Transient Survey: An Extraordinary Submillimetre Flare in the T Tauri Binary System JW 566

    Get PDF
    The binary T Tauri system JW 566 in the Orion Molecular Cloud underwent an energetic, short-lived flare observed at submillimetre wavelengths by the SCUBA-2 instrument on 26 November 2016 (UT). The emission faded by nearly 50% during the 31 minute integration. The simultaneous source fluxes averaged over the observation are 500 +/- 107 mJy/beam at 450 microns and 466 +/- 47 mJy/beam at 850 microns. The 850 micron flux corresponds to a radio luminosity of Lν=8×1019L_{\nu}=8\times10^{19} erg/s/Hz, approximately one order of magnitude brighter (in terms of νLν\nu L_{\nu}) than that of a flare of the young star GMR-A, detected in Orion in 2003 at 3mm. The event may be the most luminous known flare associated with a young stellar object and is also the first coronal flare discovered at sub-mm wavelengths. The spectral index between 450 microns and 850 microns of α=0.11\alpha = 0.11 is broadly consistent with non-thermal emission. The brightness temperature was in excess of 6×1046\times10^{4} K. We interpret this event to be a magnetic reconnection that energised charged particles to emit gyrosynchrotron/synchrotron radiation.Comment: Accepted in ApJ. 16 pages (single column), 6 figure

    The JCMT Transient Survey: An Extraordinary Submillimeter Flare in the T Tauri Binary System JW 566

    Get PDF
    © 2019 The American Astronomical Society. All rights reserved.The binary T Tauri system JW 566 in the Orion Molecular Cloud underwent an energetic, short-lived flare observed at submillimetre wavelengths by the SCUBA-2 instrument on 26 November 2016 (UT). The emission faded by nearly 50% during the 31 minute integration. The simultaneous source fluxes averaged over the observation are 500 +/- 107 mJy/beam at 450 microns and 466 +/- 47 mJy/beam at 850 microns. The 850 micron flux corresponds to a radio luminosity of Lν=8×1019L_{\nu}=8\times10^{19} erg/s/Hz, approximately one order of magnitude brighter (in terms of νLν\nu L_{\nu}) than that of a flare of the young star GMR-A, detected in Orion in 2003 at 3mm. The event may be the most luminous known flare associated with a young stellar object and is also the first coronal flare discovered at sub-mm wavelengths. The spectral index between 450 microns and 850 microns of α=0.11\alpha = 0.11 is broadly consistent with non-thermal emission. The brightness temperature was in excess of 6×1046\times10^{4} K. We interpret this event to be a magnetic reconnection that energised charged particles to emit gyrosynchrotron/synchrotron radiation.Peer reviewedFinal Published versio

    Masses for the Local Group and the Milky Way

    Get PDF
    We use the very large Millennium Simulation of the concordance Λ\LambdaCDM cosmogony to calibrate the bias and error distribution of Timing Argument estimators of the masses of the Local Group and of the Milky Way. From a large number of isolated spiral-spiral pairs similar to the Milky Way/Andromeda system, we find the interquartile range of the ratio of timing mass to true mass to be a factor of 1.8, while the 5% and 95% points of the distribution of this ratio are separated by a factor of 5.7. Here we define true mass as the sum of the ``virial'' masses M200M_{200} of the two dominant galaxies. For current best values of the distance and approach velocity of Andromeda this leads to a median likelihood estimate of the true mass of the Local Group of 5.27\times 10^{12}\msun, or logMLG/M=12.72\log M_{LG}/M_\odot = 12.72, with an interquartile range of [12.58,12.83][12.58, 12.83] and a 5% to 95% range of [12.26,13.01][12.26, 13.01]. Thus a 95% lower confidence limit on the true mass of the Local Group is 1.81\times 10^{12}\msun. A timing estimate of the Milky Way's mass based on the large recession velocity observed for the distant satellite Leo I works equally well, although with larger systematic uncertainties. It gives an estimated virial mass for the Milky Way of 2.43 \times 10^{12}\msun with a 95% lower confidence limit of 0.80 \times 10^{12}\msun.Comment: 11 pages, 6 figures, MNRAS accepted. Added a new discussion paragraph and a new figure regarding the relative transverse velocity but conclusions unchange

    The Origin of the Hubble Sequence in Lambda-CDM Cosmology

    Get PDF
    The Galform semi-analytic model of galaxy formation is used to explore the mechanisms primarily responsible for the three types of galaxies seen in the local universe: bulge, bulge+disk and disk, identified with the visual morphological types E, S0/a-Sbc, and Sc-Scd, respectively. With a suitable choice of parameters the Galform model can accurately reproduce the observed local K_s-band luminosity function (LF) for galaxies split by visual morphological type. The successful set of model parameters is used to populate the Millennium Simulation with 9.4 million galaxies and their dark matter halos. The resulting catalogue is then used to explore the evolution of galaxies through cosmic history. The model predictions concur with recent observational results including the galaxy merger rate, the star formation rate and the seemingly anti-hierarchical evolution of ellipticals. However, the model also predicts significant evolution of the elliptical galaxy LF that is not observed. The discrepancy raises the possibility that samples of z~1 galaxies which have been selected using colour and morphological criteria may be contaminated with galaxies that are not actually ellipticals.Comment: Accepted for publication in MNRAS. Missing reference adde

    A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies: I. Galaxy Mergers & Quasar Activity

    Full text link
    (Abridged) We develop a model for the cosmological role of mergers in the evolution of starbursts, quasars, and spheroidal galaxies. Combining halo mass functions (MFs) with empirical halo occupation models, we calculate where major galaxy-galaxy mergers occur and what kinds of galaxies merge, at all redshifts. We compare with observed merger MFs, clustering, fractions, and small-scale environments, and show that this yields robust estimates in good agreement with observations. Making the simple ansatz that major, gas-rich mergers cause quasar activity, we demonstrate that this naturally reproduces the observed rise and fall of the quasar luminosity density from z=0-6, as well as quasar LFs, fractions, host galaxy colors, and clustering as a function of redshift and luminosity. The observed excess of quasar clustering on small scales is a natural prediction of the model, as mergers preferentially occur in regions with excess small-scale galaxy overdensities. We show that quasar environments at all observed redshifts correspond closely to the empirically determined small group scale, where mergers of gas-rich galaxies are most efficient. We contrast with a secular model in which quasar activity is driven by bars/disk instabilities, and show that while these modes probably dominate at Seyfert luminosities, the constraints from clustering (large and small-scale), pseudobulge populations, disk MFs, luminosity density evolution, and host galaxy colors argue that they must be a small contributor to the z>1 quasar luminosity density.Comment: 34 pages, 27 figures, submitted to ApJ. Fixed appearance of Figure

    Resolving the Formation of Protogalaxies. I. Virialization

    Full text link
    (Abridged) Galaxies form in hierarchically assembling dark matter halos. With cosmological three dimensional adaptive mesh refinement simulations, we explore in detail the virialization of baryons in the concordance cosmology, including optically thin primordial gas cooling. We focus on early protogalaxies with virial temperatures of 10^4 K and their progenitors. Without cooling, virial heating occurs in shocks close to the virial radius for material falling in from voids. Material in dense filaments penetrates deeper to about half that radius. With cooling the virial shock position shrinks and also the filaments reach scales as small as a third the virial radius. The temperatures in protogalaxies found in adiabatic simulations decrease by a factor of two from the center and show flat entropy cores. In cooling halos the gas reaches virial equilibrium with the dark matter potential through its turbulent velocities. We observe turbulent Mach numbers ranging from one to three in the cooling cases. This turbulence is driven by the large scale merging and interestingly remains supersonic in the centers of these early galaxies even in the absence of any feedback processes. The virial theorem is shown to approximately hold over 3 orders of magnitude in length scale with the turbulent pressure prevailing over the thermal energy. The turbulent velocity distributions are Maxwellian and by far dominate the small rotation velocities associated with the total angular momentum of the galaxies. Decomposing the velocity field using the Cauchy-Stokes theorem, we show that ample amounts of vorticity are present around shocks even at the very centers of these objects.Comment: 13 pages, 6 figures. Submitted to ApJ on 8 March 2007. Revised manuscript. Comments welcom

    The star formation histories of low surface brightness galaxies

    Get PDF
    We have performed deep imaging of a diverse sample of 26 low surface brightness galaxies (LSBGs) in the optical and the near-infrared. Using stellar population synthesis models, we find that it is possible to place constraints on the ratio of young to old stars (which we parametrize in terms of the average age of the galaxy), as well as the metallicity of the galaxy, using optical and near-infrared colours. LSBGs have a wide range of morphologies and stellar populations, ranging from older, high-metallicity earlier types to much younger and lower-metallicity late-type galaxies. Despite this wide range of star formation histories, we find that colour gradients are common in LSBGs. These are most naturally interpreted as gradients in mean stellar age, with the outer regions of LSBGs having lower ages than their inner regions. In an attempt to understand what drives the differences in LSBG stellar populations, we compare LSBG average ages and metallicities with their physical parameters. Strong correlations are seen between an LSBG's star formation history and its K-band surface brightness, K-band absolute magnitude and gas fraction. These correlations are consistent with a scenario in which the star formation history of an LSBG primarily correlates with its surface density and its metallicity correlates with both its mass and its surface densit
    corecore