640 research outputs found

    In-Situ Colloidal MnO2 Deposition and Ozonation of 2,4-Dinitrotoluene

    Get PDF
    Laboratory experiments are presented that demonstrate a novel in situ semipassive reactive barrier for the degradation of 2,4 dinitrotoluene created by coating aquifer surfaces by deposition of colloidal MnO2, which catalyzes ozone degradation and enhances contaminant oxidation. Ozone is added to the reactive barrier and is transported through the zone with the contaminants by existing hydraulic gradients. The communication presents the preliminary laboratory investigation demonstrating the viability of this method. Studies were conducted by coating Ottawa sand with colloidal MnO2. Results show that concentrations of MnO2 in the range of 0.2 mg/g can be deposited with no measurable change in hydraulic conductivity, that there is significant coverage of the sand material by MnO2, and the deposition was not reversible under a wide range of chemical conditions. Ozonation of 2,4-dinitrotoluene in the presence of MnO2- coated sand was demonstrated to result in pseudo-first-order degradation kinetics with respect to DNT with half-lives ranging from 28 to 22 min (at pH 6 and 7, respectively), approximately 25% faster than experiments performed in the absence of MnO2

    Infusing Technology into the Balanced Literacy Classroom

    Get PDF
    This article focuses attention on how technology is being utilized in classrooms, with an emphasis on literacy learning. The authors explore the integration of technology within a balanced literacy classroom and identify three levels of technology integration commonly found within a typical K-12 classroom. Specific examples are provided for each level and classroom vignettes from the second author’s classroom are utilized. In addition, the authors provide suggested resources throughout the article for further exploration

    The Mass Assembly History of Spheroidal Galaxies: Did Newly-Formed Systems Arise Via Major Mergers?

    Get PDF
    We examine the properties of a morphologically-selected sample of 0.4<z<1.0 spheroidal galaxies in the GOODS fields in order to ascertain whether their increase in abundance with time arises primarily from mergers. To address this question we determine scaling relations between the dynamical mass determined from stellar velocity dispersions, and the stellar mass determined from optical and infrared photometry. We exploit these relations across the larger sample for which we have stellar masses in order to construct the first statistically robust estimate of the evolving dynamical mass function over 0<z<1. The trends observed match those seen in the stellar mass functions of Bundy et al. 2005 regarding the top-down growth in the abundance of spheroidal galaxies. By referencing our dynamical masses to the halo virial mass we compare the growth rate in the abundance of spheroidals to that predicted by the assembly of dark matter halos. Our comparisons demonstrate that major mergers do not fully account for the appearance of new spheroidals since z~1 and that additional mechanisms, such as morphological transformations, are required to drive the observed evolution.Comment: Accepted to ApJL; New version corrects the Millennium merger predictions--further details at http://www.astro.utoronto.ca/~bundy/millennium

    Impulsivity in juvenile delinquency: Differences among early-onset, late-onset and non-offenders

    Get PDF
    The present research investigated differences in levels of impulsivity among early-onset, late-onset, and non-offending adolescents. 129 adolescents (114 males, 15 females), of whom 86 were institutionalised (M age=15.52 years) and 43 were regular school students (M age=15.40 years) participated. Each participant completed the Adapted Self-Report Delinquency Scale, Stroop Colour and Word Test, Time Perception task, Accuracy Game, Risk-Taking Game, and the Eysenck Impulsiveness Questionnaire. Results suggest that adolescents who display rapid cognitive tempo, poor mental inhibitory control, and high impulsivity are more likely to be early-onset offenders. Offender and non-offender groups showed significant differences on several measures of impulsivity, which may suggest that late-onset offenders acquire or exacerbate impulse-related problems through social mimicry of early-onset offender peers. Potentially important implications for our understanding of delinquency and the design and provision of prevention programs are highlighted

    Observational Evidence for the Co-evolution of Galaxy Mergers, Quasars, and the Blue/Red Galaxy Transition

    Get PDF
    We compile a number of observations to estimate the time-averaged rate of formation or buildup of red sequence galaxies, as a function of mass and redshift. Comparing this with the mass functions of mergers and quasar hosts, and independently comparing their clustering properties as a function of redshift, we find that these populations trace the same mass distribution, with similar evolution, at redshifts 0<z<~1.5. Knowing one of the quasar, merger, or elliptical mass/luminosity functions, it is possible to predict the others. Allowing for greater model dependence, we compare the rate of early-type buildup with the implied merger and quasar triggering rates as a function of mass and redshift and find agreement. Over this redshift range, observed merger fractions can account for the entire bright quasar luminosity function and buildup of the red sequence at all but the highest masses at low redshift (>~10^11 M_solar at z<~0.3) where 'dry' mergers appear to dominate. This supports a necessary prediction of theories where mergers between gas-rich galaxies produce ellipticals with an associated phase of quasar activity, after which the remnant becomes red. These populations trace a similar characteristic transition mass, possibly reflecting the mass above which the elliptical population is mostly (>~50%) assembled at a given redshift, which increases with redshift over the observed range in a manner consistent with suggestions that cosmic downsizing may apply to red galaxy assembly as well as star formation. These mass distributions as a function of redshift do not uniformly trace the all/red/blue galaxy population, ruling out models in which quasar activity is generically associated with star formation or is long lived in 'old' systems.Comment: 24 pages, 17 figures. Accepted to ApJ. Substantially revised and expanded to match published versio

    Power-scaling performance of a three-dimensional tritium betavoltaic diode

    Get PDF
    Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production. © 2009 American Institute of Physics

    Diverse carbonates in exoplanet oceans promote the carbon cycle

    Get PDF
    Carbonate precipitation in oceans is essential for the carbonate-silicate cycle (inorganic carbon cycle) to maintain temperate climates. By considering the thermodynamics of carbonate chemistry, we demonstrate that the ocean pH decreases by approximately 0.5 for a factor of 10 increase in the atmospheric carbon dioxide content. The upper and lower limits of ocean pH are within 1–4 of each other, where the upper limit is buffered by carbonate precipitation and defines the ocean pH when the carbon cycle operates. If the carbonate compensation depth (CCD) resides above the ocean floor, then carbonate precipitation and the carbon cycle cease to operate. The CCD is deep (>40 km) for high ocean temperature and high atmospheric carbon dioxide content. Key divalent carbonates of magnesium, calcium and iron produce an increasingly wider parameter space of deep CCDs, suggesting that chemical diversity promotes the carbon cycle. The search for life from exoplanets will benefit by including chemically more diverse targets than Earth twins

    Identifying Sources of Error in Surveys of Devils Hole Pupfish (Cyprinodon diabolis)

    Get PDF
    We assessed four potential sources of error in estimating size of the population of Devils Hole pupfish (Cyprinodon diabolis): net, time of day, diver, and order of diver. Experimental dives (3/day) were conducted during 4 days in July 2009. Effects of the four sources of error on estimates from dive surveys were analyzed using a split-split plot ANOVA. Diver and order of diver had no significant influence on estimates, whereas the effect of presence or absence of a net was significant. Effects of time of day and presence or absence of a net showed a significant interaction with depth of water. Results indicated that pupfish may move upward during the dive, and as a result, the standard methods of dive surveys may underestimate abundance

    Demography of SDSS early-type galaxies from the perspective of radial color gradients

    Full text link
    We have investigated the radial g-r color gradients of early-type galaxies in the Sloan Digital Sky Survey (SDSS) DR6 in the redshift range 0.00<z<0.06. The majority of massive early-type galaxies show a negative color gradient (red-cored) as generally expected for early-type galaxies. On the other hand, roughly 30 per cent of the galaxies in this sample show a positive color gradient (blue-cored). These "blue-cored" galaxies often show strong H beta absorption line strengths and/or emission line ratios that are indicative of the presence of young stellar populations. Combining the optical data with Galaxy Evolution Explorer (GALEX) UV photometry, we find that all blue-cored galaxies show UV-optical colors that can only be explained by young stellar populations. This implies that most of the residual star formation in early-type galaxies is centrally concentrated. Blue-cored galaxies are predominantly low velocity dispersion systems. A simple model shows that the observed positive color gradients (blue-cored) are visible only for a billion years after a star formation episode for the typical strength of recent star formation. The observed effective radius decreases and the mean surface brightness increases due to this centrally-concentrated star formation episode. As a result, the majority of blue-cored galaxies may lie on different regions in the Fundamental Plane from red-cored ellipticals. However, the position of the blue-cored galaxies on the Fundamental Plane cannot be solely attributed to recent star formation but require substantially lower velocity dispersion. We conclude that a low-level of residual star formation persists at the centers of most of low-mass early-type galaxies, whereas massive ones are mostly quiescent systems with metallicity-driven red cores.Comment: 15 pages, 19 figures, accepted for publication in ApJ

    Lithologic Controls on Silicate Weathering Regimes of Temperate Planets

    Get PDF
    Weathering of silicate rocks at a planetary surface can draw down CO2 from the atmosphere for eventual burial and long-term storage in the planetary interior. This process is thought to provide essential negative feedback to the carbonate-silicate cycle (carbon cycle) to maintain clement climates on Earth and potentially similar temperate exoplanets. We implement thermodynamics to determine weathering rates as a function of surface lithology (rock type). These rates provide upper limits that allow the maximum rate of weathering in regulating climate to be estimated. This modeling shows that the weathering of mineral assemblages in a given rock, rather than individual minerals, is crucial to determine weathering rates at planetary surfaces. By implementing a fluid-transport-controlled approach, we further mimic chemical kinetics and thermodynamics to determine weathering rates for three types of rocks inspired by the lithologies of Earthʼs continental and oceanic crust, and its upper mantle. We find that thermodynamic weathering rates of a continental crust-like lithology are about one to two orders of magnitude lower than those of a lithology characteristic of the oceanic crust. We show that when the CO2 partial pressure decreases or surface temperature increases, thermodynamics rather than kinetics exerts a strong control on weathering. The kinetically and thermodynamically limited regimes of weathering depend on lithology, whereas the supply-limited weathering is independent of lithology. Our results imply that the temperature sensitivity of thermodynamically limited silicate weathering may instigate a positive feedback to the carbon cycle, in which the weathering rate decreases as the surface temperature increases
    corecore