515 research outputs found

    Attitude Control Performance of IRVE-3

    Get PDF
    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission

    Comparison of Instantaneous and Constant-Rate Stream Tracer Experiments Through Parametric Analysis of Residence Time Distributions

    Get PDF
    Artificial tracers are frequently employed to characterize solute residence times in stream systems and infer the nature of water retention. When the duration of tracer application is different between experiments, tracer breakthrough curves at downstream locations are difficult to compare directly. We explore methods for deriving stream solute residence time distributions (RTD) from tracer test data, allowing direct, non-parametric comparison of results from experiments of different durations. Paired short- and long-duration field experiments were performed using instantaneous and constant-rate tracer releases, respectively. The experiments were conducted in two study reaches that were morphologically distinct in channel structure and substrate size. Frequency- and time domain deconvolution techniques were used to derive RTDs from the resulting tracer concentrations. Comparisons of results between experiments of different duration demonstrated few differences in hydrologic retention characteristics inferred from short- and long-term tracer tests. Because non-parametric RTD analysis does not presume any shape of the distribution, it is useful for comparisons across tracer experiments with variable inputs and for validations of fundamental transport model assumptions

    Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters

    Get PDF
    The aspartate-derived amino-acid pathway from plants is well suited for analysing the function of the allosteric network of interactions in branched pathways. For this purpose, a detailed kinetic model of the system in the plant model Arabidopsis was constructed on the basis of in vitro kinetic measurements. The data, assembled into a mathematical model, reproduce in vivo measurements and also provide non-intuitive predictions. A crucial result is the identification of allosteric interactions whose function is not to couple demand and supply but to maintain a high independence between fluxes in competing pathways. In addition, the model shows that enzyme isoforms are not functionally redundant, because they contribute unequally to the flux and its regulation. Another result is the identification of the threonine concentration as the most sensitive variable in the system, suggesting a regulatory role for threonine at a higher level of integration

    The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience

    Get PDF
    With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line

    Genome-Wide Association Study for Identification and Validation of Novel SNP Markers for \u3ci\u3eSr6\u3c/i\u3e Stem Rust Resistance Gene in Bread Wheat

    Get PDF
    Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat (Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of stem rust resistance in Nebraska winter wheat, we applied genome-wide association study (GWAS) on a set of 270 winter wheat genotypes (A-set). Genotyping was carried out using genotyping-by-sequencing and ~35,000 high-quality SNPs were identified. The tested genotypes were evaluated for their resistance to the common stem rust race in Nebraska (QFCSC) in two replications. Marker-trait association identified 32 SNP markers, which were significantly (Bonferroni corrected P \u3c 0.05) associated with the resistance on chromosome 2D. The chromosomal location of the significant SNPs (chromosome 2D) matched the location of Sr6 gene which was expected in these genotypes based on pedigree information. A highly significant linkage disequilibrium (LD, r2) was found between the significant SNPs and the specific SSR marker for the Sr6 gene (Xcfd43). This suggests the significant SNP markers are tagging Sr6 gene. Out of the 32 significant SNPs, eight SNPs were in six genes that are annotated as being linked to disease resistance in the IWGSC RefSeq v1.0. The 32 significant SNP markers were located in nine haplotype blocks. All the 32 significant SNPs were validated in a set of 60 different genotypes (V-set) using single marker analysis. SNP markers identified in this study can be used in marker-assisted selection, genomic selection, and to develop KASP (Kompetitive Allele Specific PCR) marker for the Sr6 gene

    Structural Basis for a Neutralizing Antibody Response Elicited by a Recombinant Hantaan Virus Gn Immunogen

    Get PDF
    Hantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID50], 1:200 to 1:850) in an animal model. Using antigen-specific B cell sorting, we isolated monoclonal antibodies (mAbs) exhibiting neutralizing and non-neutralizing activity, termed mAb HTN-Gn1 and mAb nn-ITN-Gn2, respectively. Crystallographic analysis reveals that these mAbs target spatially distinct epitopes at disparate sites of the N-terminal region of the HTNV Gn ectodomain. Epitope mapping onto a model of the higher order (Gn-Gc)(4) spike supports the immune accessibility of the mAb HTN-Gn1 epitope, a hypothesis confirmed by electron cryo-tomography of the antibody with virus-like particles. These data define natively exposed regions of the hantaviral Gn that can be targeted in immunogen design. IMPORTANCE The spillover of pathogenic hantaviruses from rodent reservoirs into the human population poses a continued threat to human health. Here, we show that a recombinant form of the Hantaan virus (HTNV) surface-displayed glycoprotein, Gn, elicits a neutralizing antibody response in rabbits. We isolated a neutralizing (HTN-Gn1) and a non-neutralizing (nn-ITN-Gn2) monoclonal antibody and provide the first molecular-level insights into how the Gn glycoprotein may be targeted by the antibody-mediated immune response. These findings may guide rational vaccine design approaches focused on targeting the hantavirus glycoprotein envelope.Peer reviewe

    Bio-physical determinants of sediment accumulation on an offshore coral reef: A snapshot study

    Get PDF
    Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales. This has led to a partial understanding of how sediments and living reef systems are connected, especially on clear-water offshore reefs. To address this problem, four sediment reservoirs/sedimentary processes and three bio-physical drivers were quantified across seven different reef habitats/depths at Lizard Island, an exposed mid-shelf reef on the Great Barrier Reef. Even in this clear-water reef location a substantial load of suspended sediment passed over the reef; a load theoretically capable of replacing the entire standing stock of on-reef turf sediments in just 8 h. However, quantification of actual sediment deposition suggested that just 2 % of this passing sediment settled on the reef. The data also revealed marked spatial incongruence in sediment deposition (sediment trap data) and accumulation (TurfPod data) across the reef profile, with the flat and back reef emerging as key areas of both deposition and accumulation. By contrast, the shallow windward reef crest was an area of deposition but had a limited capacity for sediment accumulation. These cross-reef patterns related to wave energy and reef geomorphology, with low sediment accumulation on the ecologically important reef crest aligning with substantial wave energy. These findings reveal a disconnect between patterns of sediment deposition and accumulation on the benthos, with the ‘post-settlement’ fate of sediments dependent on local hydrodynamic conditions. From an ecological perspective, the data suggests key contextual constraints (wave energy and reef geomorphology) may predispose some reefs or reef areas to high-load turf sediment regimes

    Lipidomics needs more standardization

    Get PDF
    Modern mass spectrometric technologies provide quantitative readouts for a wide variety of lipid specimens. However, many studies do not report absolute lipid concentrations and differ vastly in methodologies, workflows, and data presentation. Therefore, we appeal to researchers to engage with the Lipidomics Standards Initiative to develop common standards for minimum acceptable data quality and reporting for lipidomics data to take lipidomics research to the next level
    corecore