179 research outputs found

    Review of the Leaf Essential Oils of the Genus Backhousia Sens. Lat. and a Report on the Leaf Essential Oils of B. gundarara and B. tetraptera

    Get PDF
    A review of the leaf oils of the 13 species now recognised in the genus Backhousia is presented. This review carries on from, and incorporates data from, an earlier (1995) review of the then recognised eight species. The leaf oils of two new species of Backhousia, B. gundarara and B. tetraptera are reported for the first time. B. gundarara contains a mixture of mono-and sesquiterpenes, with α-pinene (14%) and spathulenol (11%) being the main members. In B. tetraptera, the principal component of the mainly terpenoid leaf oil is myrtenyl acetate (20–40%). The review also incorporates the two species of the genus Choricarpia, which have been subsumed into Backhousia, viz. B. leptopetala and B. subargentea. Due to its history in Backhousia, Syzygium anisatum, which has been transferred out of Backhousia, is included in the review for historical reasons

    C-15 ACETOGENINS FROM THE MARINE ALGA Chondria

    Get PDF
    ABSTRACT (-) Z-Pinnatifidenyn~, a novel C-15 acetogenin has been isolated along with the known compound (+)- 3Z,6R,7R-obtusenyne and (+) (3Z)-/aurenyne from the Australian red alga Chondria armata. The structures of the compounds were elucidated based on spectral data analysis including 20 NMR spectroscopic experiment. Keywords: Chondria armata, C-15 acetogenin, 20 NM

    C-15 ACETOGENINS FROM THE MARINE ALGA Chondria

    Get PDF
    (-) Z-Pinnatifidenyne, a novel C-15 acetogenin has been isolated along with the known compound (+)-3Z,6R,7R-obtusenyne and (+) (3Z)-laurenyne from the Australian red alga Chondria armata. The structures of the compounds were elucidated based on spectral data analysis including 2D NMR spectroscopic experiment.   Keywords: Chondria armata, C-15 acetogenin, 2D NM

    Type 2 Diabetes Modifies the association of Cad Genomic Risk Variants With Subclinical atherosclerosis

    Get PDF
    BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D. METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test. RESULTS: Using a Bonferroni-corrected significance threshold of CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC

    A Framework For Detecting Noncoding Rare-Variant associations of Large-Scale Whole-Genome Sequencing Studies

    Get PDF
    Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 toPMed samples. We also analyze five non-lipid toPMed traits

    Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium

    Get PDF
    Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5×10−8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations

    Exome chip analysis identifies low-frequency and rare variants in MRPL38 for white matter hyperintensities on brain MRI

    Get PDF
    International audienc

    Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil

    Get PDF
    Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness

    Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain

    Get PDF
    Back pain is the #1 cause of years lived with disability worldwide, yet surprisingly little is known regarding the biology underlying this symptom. We conducted a genome-wide association study (GWAS) meta-analysis of ch
    • …
    corecore