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Abstract 

Background and Purpose White matter hyperintensities (WMH) on brain magnetic resonance 

imaging are typical signs of cerebral small vessel disease and may indicate various pre-clinical, 

age-related neurological disorders such as stroke. Though WMH are highly heritable, known 

common variants explain a small proportion of the WMH variance. The contribution of low-

frequency/rare coding variants to WMH burden has not been explored. 

Methods In the discovery sample we recruited 20,719 stroke/dementia-free adults from 13 

population-based cohort studies within the Cohorts for Heart and Aging Research in Genomic 

Epidemiology consortium, among which 17,790 were of European ancestry (EA) and 2,929 of 

African ancestry (AA). We genotyped these participants at ~250,000 mostly exonic variants with 

Illumina HumanExome BeadChip arrays. We performed ethnicity-specific linear regression on 

rank-normalized WMH in each study separately, which were then combined in meta-analyses to 

test for association with single variants and genes aggregating the effects of putatively functional 

low-frequency/rare variants. We then sought replication of the top findings in 1,192 adults (EA) 

with whole exome/genome sequencing data from two independent studies. 

Results At 17q25, we confirmed the association of multiple common variants in TRIM65, FBF1, 

and ACOX1 (p<6×10−7). We also identified a novel association with two low-frequency non-

synonymous variants in MRPL38 (lead: rs34136221, pEA=4.5×10−8) partially independent of 

known common signal (pEA(conditional)=1.4×10−3). We further identified a locus at 2q33 containing 

common variants in NBEAL1, CARF, and WDR12 (lead: rs2351524, pall=1.9×10−10). Although 

our novel findings were not replicated due to limited power and possible differences in study 

design, meta-analysis of the discovery and replication samples yielded stronger association for 

the two low-frequency MRPL38 variants (prs34136221=2.8×10−8). 
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Conclusions Both common and low-frequency/rare functional variants influence WMH. Larger 

replication and experimental follow-up are essential to confirm our findings and uncover the 

biological causal mechanisms of age-related WMH.
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Introduction 

White matter hyperintensities (WMH) on brain magnetic resonance imaging (MRI) refer to areas 

of high intensity signal within cerebral white matter on T2-weighted images. These 

abnormalities are believed to reflect demyelination and axonal loss as a result of chronic 

ischemia and blood-brain barrier dysfunction caused by cerebral small vessel disease (SVD)1 and 

are commonly observed in the aging population.2,3 Substantial evidence supports an association 

between a high WMH burden and an increased risk of stroke, dementia, and death.4 

The prevalence and severity of WMH increase with advancing age and presence of 

cardiovascular risk factors, notably hypertension.5–7 Besides, susceptibility to WMH has a large 

genetic component, with heritability estimates ranging from 55% to 80%.8–10 Genome-wide 

association studies (GWASs) have identified common genetic variants on chromosome 17q25 

associated with WMH.11,12 These findings were consistently confirmed in independent studies.13–

16 Other loci were also identified genome-wide significant in a multi-ethnic GWAS, including 

common variants at 10q24, 2p21, 1q22, and 2p16.12 Though additional associations are yet to be 

discovered, common variants are estimated to account for at most a quarter of the WMH 

phenotypic variance.17 The remaining heritability is still unexplained. 

Putatively functional, low-frequency (minor allele frequency (MAF) 1~5%) and rare variants 

(MAF≤1%) within the protein-coding region of the genome (exome), which are not well 

captured by GWAS arrays, have been proposed to play an important role in complex traits.18,19 

Yet their effect on WMH has not been explored. Taking advantage of an international 

collaboration of 13 population-based cohort studies within the Cohorts for Heart and Aging 

Research in Genomic Epidemiology (CHARGE) consortium,20 we conducted exome-wide 

association analysis in over 20,000 participants of European or African ancestry genotyped with 
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Illumina HumanExome BeadChip (exome chip) to identify novel coding variants influencing 

WMH burden. 

Methods 

Summary data for this meta-analysis will be available through the database of Genotypes and 

Phenotypes (dbGaP) CHARGE Summary Results site,21 which can be downloaded via 

authorized access. 

Study sample 

Thirteen cohort studies within CHARGE consortium were included in the discovery sample 

(Supplemental Methods). They followed standardized procedure for subject inclusion, genotype 

calling, phenotype harmonization, covariate selection, and study-level analysis. In addition, two 

samples of European ancestry from the Three-City Dijon (3C-Dijon) Study and the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) were used for replication (Supplemental Methods). 

Study participants were included in the analyses if they had phenotype, genotype and covariate 

data available and did not have stroke/dementia at the time of MRI scan. Institutional review 

boards approved all participating studies, and study participants provided written informed 

consent. 

MRI scan and WMH measurement 

MRI scans were performed in each study separately, following a standard procedure 

(Supplemental Methods). In brief, the magnetic field strength of the scanners used in different 

studies ranged from 1.5 to 3.0 tesla, except for a single site in the Cardiovascular Health Study 

(CHS) where the strength was 0.35 tesla. T2-weighted spin-echo pulse sequence were used and 

complemented by either proton density or fluid-attenuated inversion recovery sequence to 

contrast WMH against cerebrospinal fluid signal. Axial images were acquired and WMH were 
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estimated on a semi-quantitative visual rating scale (Atherosclerosis Risk in Communities 

(ARIC) Study Visit 3 (V3) and CHS) or using a quantitative volumetric method (other studies). 

The two methods have been compared within ARIC and CHS, and showed high agreement with 

each other.22,23 

Genotyping and quality control 

Exome chip is a genotyping array focusing on ~250,000 mostly coding variants discovered 

through exome sequencing in ~12,000 individuals and observed at least three times across at 

least two existing sequence datasets, including non-synonymous, splicing, stop-altering variants, 

most of which are rare (http://genome.sph.umich.edu/wiki/Exome_Chip_Design). Samples from 

all discovery cohorts were genotyped with Illumina HumanExome BeadChip. Variant calling 

and quality control in these studies were performed either jointly24 or individually following the 

same protocol (Supplemental Methods). For the replication samples, whole exome sequencing 

(WES) was performed only on 3C-Dijon individuals with the extremes of the WMH distribution, 

according to its study design; Whole genome sequencing was performed on ADNI subjects 

(Supplemental Methods). 

Statistical analysis 

Figure 1 shows a flow chart illustrating the analytical approach implemented in this study. 

Detailed description of the analytical methods can be found in Supplemental Methods. In brief, 

at the individual study level, we performed ethnicity-specific linear regression on rank-

normalized WMH in each study separately, which were then combined in meta-analyses to test 

for association with single variants and genes aggregating the effects of putatively functional 

low-frequency/rare variants. Analyses conditioning on hypertension status and lead single 

nucleotide polymorphisms (SNPs) in previous GWAS were also performed, respectively 
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(Supplemental Methods). The statistical method utilized in the replication analysis for exome-

wide significant variants identified is described in Supplemental Methods.  

Annotation and functional interpretation 

The predicted consequences of all single variants were obtained via dbNSFP,25 which were then 

used to aggregate putatively functional variants in the gene-based analysis. Functional prediction 

scores for the exome-wide significant variants from SIFT,26 PolyPhen,27 and CADD28 were 

obtained via Ensembl Variant Effect Predictor.29 We also used the Genotype-Tissue Expression 

(GTEx) database to investigate whether these variants affect gene expression in multiple brain 

tissues.30 

Results 

After exclusion and quality control, the discovery sample included 17,790 participants of 

European ancestry (EA, mean age = 66 years) and 2,929 of African ancestry (AA, mean age = 62 

years). Descriptive statistics of the participants from each discovery cohort are summarized in 

Supplemental Table I. A summary of variants included in the meta-analysis by chromosome is 

shown in Supplemental Table II. 

Our primary analysis identified several common and low-frequency/rare variants associated 

with WMH (p<6×10−7) in the EA and combined samples but not in the AA sample. They include 

six variants at 17q25 (four common variants are known and two low-frequency variants in 

MRPL38 at 17q25 are novel) and three common variants at 2q33 (Table 1, Figure 2, 

Supplemental Figure I). No other GWAS loci were significant in our analysis (Supplemental 

Results). Gene-based analysis showed that MRPL38 was associated with WMH (p<3.6×10−6) in 

the EA and combined samples but not in the AA sample (Supplemental Table III, Supplemental 

Figure II). The association was consistent across studies (Supplemental Table IV). However, 
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among all variants aggregated in this gene, the two significant variants in the single variant 

analysis contributed most (Supplemental Table V). 

Adjustment for hypertension status did not meaningfully affect the signals in both single 

variant and gene-based analysis (Table 1, Supplemental Table III). When adjusting for 

rs7214628, the lead known GWAS SNP, 17q25 associations were no longer significant (p>0.05), 

except those in MRPL38. The two low-frequency variants in MRPL38 remained nominally 

significant, with p-value ~0.001 in the EA sample and 0.006 in the combined sample 

(Supplemental Table VI). The same trend was observed in the gene-based analysis 

(Supplemental Table III). 

The replication samples included WES data from 498 individuals with extremes on WMH 

scale and WGS data from 694 individuals (Supplemental Table VII). We tested nine exome-wide 

significant variants identified in the discovery sample for replication, which represented three 

independent signals. Thus the significance threshold was set to p<0.017. The results are shown in 

Supplemental Table VIII. Four known variants in TRIM65, FBF1, and ACOX1 at 17q25 were 

significant in the 3C-Dijon sample. Two low-frequency variants in MRPL38 at 17q25 and three 

common variants at 2q33 were not significant. However, the direction of the association for these 

variants was the same between the discovery and replication samples, and meta-analysis of the p-

values for the discovery and replication samples yielded more significant results for the two 

variants in MRPL38. Test of heterogeneity between discovery and replication samples yielded 

negative results. 

Functional predictions for the nine exome-wide significant variants by SIFT, PolyPhen, and 

CADD are summarized in Supplemental Table IX. Of note, most 17q25 variants have a scaled 

CADD score >10, indicating they are predicted to be among the 10% most deleterious variants in 
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the genome. Interestingly, the two low-frequency MRPL38 variants have the highest scaled 

CADD score among our top variants (23.9 and 32 for rs34136221 and rs9191, respectively), 

meaning that they are among the 1% and 0.1% most deleterious variants, respectively. Moreover, 

both variants are predicted deleterious by SIFT, and rs9191 is predicted probably damaging by 

PolyPhen. 

The expression quantitative trait locus (eQTL) results for these top variants from GTEx 

database are summarized in Supplemental Table X. In brief, common variants at 17q25 are 

significant eQTLs for their nearby genes (FBF1, MRPL38, TRIM47, and TRIM65) in multiple 

brain tissues. One of the two low-frequency variants in MRPL38, rs34136221, acts as a cis-eQTL 

for TRIM47 in cerebellum (p=1.8×10−6) (Supplemental Figure III (A)). At 2q33, two common 

variants, rs72932557 and rs35212307, are associated with the expression level of ICA1L in 

frontal cortex (p=2.6×10−5) (Supplemental Figure III (B)). 

 

Discussion 

In this meta-analysis of association studies between WMH burden and exome chip genotypes in 

13 community-based cohorts of stroke/dementia-free adults of European and African ancestry, 

we identified both common and low-frequency/rare variants significantly associated with WMH. 

At the known 17q25 locus, four exome-wide significant common variants were identified in our 

previous GWAS because they were true signals and the majority of the participants in our exome 

chip analysis were also included in the previous GWAS. Meanwhile, we showed that the 

association between the low-frequency non-synonymous variants in MRPL38 and WMH was 

partially independent of the known GWAS signal. Although this gene was reported previously 

for WMH,12,16 the variants identified were mostly common and within the linkage disequilibrium 
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(LD) block of the lead GWAS SNP at 17q25. According to the design of exome chip, which 

focuses on different genomic regions and allele frequency spectrum from those for GWAS, it is 

unlikely that the overlapping sample used in the current study and previous GWAS contributed 

to the novel low-frequency variants identified here. We also identified significant association at 

2q33. In our previous GWAS, this locus (rs72934505, r2>0.96) was only suggestively associated 

with WMH,12 though it reached genome-wide significance when combining evidence from an 

additional GWAS of WMH in stroke patients.31 We failed to replicate the novel low-frequency 

variants in MRPL38 at 17q25 or in those genes at 2q33, possibly due to the low frequency of the 

variants (MRPL38), the small effect size (2q33), the limited sample size, and the difference in 

sample selection strategy, phenotypic transformation, or regression model used in the replication 

samples. Using the 3C-Dijon data, we calculated that we had less than 15% power to detect 

association for the two low-frequency variants in MRPL38, less than 7% for the three variants at 

2q33, comparing to over 70% power to detect association for those known variants at 17q25 

(TRIM65, FBF1, and ACOX1). However, we confirmed the direction of their effect, and indeed, 

the improved p-values by meta-analyzing the discovery and replication samples as well as no 

evidence of heterogeneity provided additional support for the novel association of MRPL38 

variants with WMH (Supplemental Table VIII). 

The two low-frequency variants in MRPL38, rs34136221 and rs9191, are in complete LD 

with each other. Both have MAF of ~1.6% in our sample, which are consistent with allele 

frequencies observed in the 1000 Genomes Project. In this study, these low-frequency variants 

contributed primarily to the significance of the gene-based association of MRPL38, which 

encodes the mitochondrial 39S ribosomal protein L38 containing 380 amino acids. Both variants 

are non-synonymous. The “A” allele of rs34136221 leads to a change from arginine to 
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tryptophan at position 99 (R99W), and the “G” allele of rs9191 changes aspartic acid at position 

371 to histidine (D371H). These changes are predicted to be deleterious to the protein function 

by SIFT and CADD (Supplemental Table IX). This protein is an important constituent of the 

large subunit of mitochondrial ribosomes responsible for assembling mitochondrial DNA-coded 

proteins essential for oxidative phosphorylation.32 The L38 protein maintains the core 

architecture of the large subunit’s central protuberance, which interacts with the small subunit 

and with mitochondrial transfer RNAs bound to the ribosome, and is hence critical for 

mitochondrial translation.32 The exact function of MRPL38 is still not clear, but interestingly, the 

structure of the L38 protein is similar to the phosphatidylethanolamine-binding proteins 

(PEBPs). PEBPs are identified in numerous tissues and have various functions, including a role 

in neural development and differentiation, which have been implicated in Alzheimer’s disease 

and gliomas.33 Evidence is also accumulating that mutated mitochondrial ribosomal protein 

genes are involved in impaired mitochondrial translation leading to several neurological 

diseases.34 For instance, MRPL18, another mitochondrial ribosomal protein gene that was found 

to be upregulated in active multiple sclerosis lesions,35 was also differentially expressed in brains 

of young spontaneously hypertensive stroke-prone rats and associated with WMH.16 In addition 

to the deleterious effect on its encoding protein, rs34136221 also acted as a cis-eQTL for 

TRIM47 in cerebellum (Supplemental Figure III (A)), a gene in which common variants have 

been associated with WMH in previous GWASs,11,12 indicating that this variant may mediate the 

common effect of TRIM47 on WMH. Taken together, these data provide biological plausibility 

supporting the role of deleterious non-synonymous variants in MRPL38 in the pathophysiologic 

changes in the white matter. 
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Three significant common variants at 2q33 are in high LD with each other (r2>0.98) with a 

MAF of ~12% in our sample. rs2351524 is located at the 5’ untranslated region of NBEAL1. This 

variant was associated with coronary artery disease36 and is likely to affect transcription factor 

binding.37 NBEAL1 encodes the neurobeachin-like 1 protein, one of nine Beige and Chédiak-

Higashi domain-containing proteins (BDCPs).38 The functions of BDCPs remain largely 

unknown, but BDCP gene mutations may affect lysosome size, apoptosis, autophagy, granule 

size, or synapse formation.39 Though NBEAL1 is the least studied and understood BDCP, its 

coding gene is highly expressed in brain and upregulated in glioma.38 The association of an 

NBEAL1 variant reported here is in line with our previous observation that many loci 

significantly associated with WMH contain variants in genes implicated in malignant brain 

tumors of the white matter that involve glial cells and further suggests that the genetic pathway 

may be shared between WMH in aging and glioma, perhaps, through glial cell activation or 

oxidative DNA damage.40 rs72932557 is a non-synonymous SNP in CARF. This gene encodes a 

calcium responsive transcription factor, a DNA-binding protein that modulates the transcription 

of brain-derived neurotrophic factor (BDNF).41 BDNF is a nerve growth factor that promotes 

neuronal survival in the adult brain, and a BDNF polymorphism has been associated with WMH 

in healthy elderly population.42 Animal studies have shown that knockdown of Carf reduced 

cortical BDNF expression and impaired memory.43 Whether the observed association of the 

CARF variant with WMH is direct or through its effect on BDNF remains to be tested. The 

recent finding that astrocyte-derived BDNF may promote oligodendrogenesis and recovery from 

white matter damage is consistent with such a hypothesis.44 rs35212307 is a non-synonymous 

SNP in WDR12. This gene encodes the WD repeat domain 12, a component of the PeBoW 

complex required for ribosome biogenesis.45 Variants in WDR12 have been identified in GWAS 
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of early myocardial infarction46 and coronary artery disease47 and have been associated with 

carotid intima-media thickness.48 The relationship between carotid atherosclerosis and WMH has 

long been reported.49 In a recent meta-analysis of 10 population-based studies, carotid 

atherosclerosis was strongly associated with the presence of WMH (odds ratio =1.42, 

p<0.0001),50 suggesting a possible role of WDR12 on WMH through atherosclerosis. However, 

this hypothesis was not supported by a recent large meta-analysis of more than 50,000 

participants with carotid intima-media thickness, in which exome chip variants in WDR12 were 

not significant.51 In the eQTL analysis by GTEx, both rs72932557 and rs35212307 were 

associated with the expression level of ICA1L in frontal cortex (Supplemental Figure III (B)), a 

gene suggestively associated with neuroticism.52 

Strengths of our study include the large community-based sample of middle-aged to older 

adults free from stroke/dementia and the first investigation of low-frequency/rare putatively 

functional variants in the coding regions of the genome in relation to WMH. Several limitations 

should be noted. In particular, the use of a rank-based inverse normal transformation of WMH 

did not allow for meaningful estimates of effect size, while having the advantages of 

harmonizing measures of WMH taken on different scale among individual studies, as well as 

maintaining desirable statistical properties of the analytical models for low-frequency/rare 

variant analysis. It should also be noted that, despite close agreement between visual rating and 

volumetric measurement of WMH, there are still known discrepancies in certain circumstances.53 

Possible inconsistent definitions of dementia used to filter out participants across studies as well 

as presence of correlated SVD traits such as lacunes and microbleeds may represent sources of 

heterogeneity in our sample, which may have diminished our power to detect genetic effects. In 

addition, variants captured by exome chip represent only a fraction of the genetic diversity of the 
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genome; we were unable to examine even rarer variants or those that lie outside the coding 

regions. Whole genome sequencing can provide a more comprehensive view of the genome. 

Recently, an initial WGS effort for brain imaging traits was made in the Framingham Heart 

Study, in which the investigators identified an independent common signal at 17q25 (rs9889965) 

associated with WMH volume.54 Intriguingly, consistent with our novel finding of low-

frequency MRPL38 variant (rs34136221), this variant is also an eQTL for TRIM47 in brain 

tissues, which provides additional evidence for the role of eQTLs in the development of WMH 

through the expression of TRIM47 involved in glial cell activation. The WGS study also 

identified two novel loci. While confirmation of these loci in additional samples is needed, they 

were not observed in our data (not shown). 

In conclusion, in this exome chip analysis of over 20,000 stroke/dementia-free individuals of 

European or African ancestry, we identified low-frequency non-synonymous variants in 

MRPL38 at 17q25 associated with WMH partially independently of known common signals. In 

addition, we showed that common variants at 2q33, a previous suggestive locus in stroke-free 

populations, reached exome-wide significance in our analysis. Functional annotation provides 

further support for a role of pathways involved in glial cell activation and oxidative damage, 

possibly common to WMH and glioma. Larger replication and experimental follow-up are 

essential to confirm our findings and uncover the biological causal mechanisms of age-related 

WMH, and thus to provide a foundation for identifying targets for diagnosis, treatment and 

prevention.
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Figure Legends 

Figure 1. A flow chart illustrating the analytical approach implemented in this study. MRI: 

magnetic resonance imaging; WMH: white matter hyperintensities; ICV: intracranial volume; 

HT: hypertension; SNP: single nucleotide polymorphism; PC: principal component; GWAS: 

genome-wide association study; EA: European ancestry; AA: African ancestry. *Field center 

was adjusted if available; Total ICV was adjusted in cohorts with volumetric measure of WMH; 

Family relationship was adjusted in cohorts with family data; HT was adjusted in the conditional 

analysis only. †GWAS lead SNP was adjusted in the conditional analysis assessing 

independence of significant findings at known loci only. 

Figure 2. Manhattan plots for single variant analysis without adjustment for hypertension status 

in the sample of (A) European ancestry (EA), (B) African ancestry (AA), and (C) their 

combination (EA + AA), respectively. The minor allele frequency threshold was >0.1%. The 

significance threshold was p<6×10−7 (grey horizontal line). Two significant loci (17q25 and 

2q33) in the EA and combined sample were highlighted in green.
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Tables 

Table 1. Summary of exome-wide significant variants in either EA, AA, or combined sample. 

rsID Locus chr:pos Gene Function RA Sample N RAF p (Unadjusted) p (HT-adjusted) 

rs3760128 17q25 17:73886888 TRIM65 NS G 

EA 17,790 0.324 +8.18E−10 +3.50E−10 

AA 2,747 0.711 +7.06E−02 +7.65E−02 

All 20,537 0.375 +1.54E−10 +7.14E−11 

rs2351524 2q33 2:203880992 NBEAL1 UTR5 T 

EA 17,103 0.123 −5.67E−09 −1.83E−08 

AA 2,323 0.062 −4.25E−03 −5.28E−03 

All 19,426 0.115 −1.92E−10 −7.43E−10 

rs2305913 17q25 17:73922941 FBF1 NS C 

EA 17,790 0.327 +6.47E−09 +3.42E−09 

AA 2,747 0.679 +3.92E−01 +4.19E−01 

All 20,537 0.374 +8.27E−09 +5.03E−09 

rs1135640 17q25 17:73949540 ACOX1 NS G 

EA 17,422 0.332 +2.21E−08 +1.03E−08 

AA 2,929 0.687 +3.97E−01 +4.32E−01 

All 20,351 0.383 +2.83E−08 +1.57E−08 

rs72932557 2q33 2:203846817 CARF NS T 

EA 17,790 0.123 −3.49E−08 −6.53E−08 

AA 2,929 0.034 −1.32E−01 −2.65E−01 

All 20,719 0.11 −1.13E−08 −3.44E−08 

rs35212307 2q33 2:203765756 WDR12 NS C 

EA 17,790 0.123 −3.85E−08 −1.11E−07 

AA 2,929 0.033 −1.05E−01 −1.46E−01 

All 20,719 0.11 −1.09E−08 −3.89E−08 

rs34136221 17q25 17:73898188 MRPL38 NS A 

EA 17,790 0.016 +4.47E−08 +4.15E−08 

AA 2,929 0.004 −7.69E−02 −1.06E−01 

All 20,719 0.014 +6.11E−07 +4.93E−07 

rs9191 17q25 17:73894963 MRPL38 NS G 

EA 17,790 0.016 +1.76E−07 +1.71E−07 

AA 2,929 0.004 −1.25E−01 −1.71E−01 

All 20,719 0.014 +1.62E−06 +1.36E−06 

rs1135889 17q25 17:73926121 FBF1 NS A 

EA 17,790 0.221 +4.72E−07 +2.08E−07 

AA 2,929 0.194 −7.73E−01 −8.32E−01 

All 20,719 0.217 +4.03E−06 +1.75E−06 
EA: European ancestry; AA: African ancestry; RA: risk allele; RAF: risk allele frequency; HT: hypertension; NS: non-synonymous; UTR5: 5’ untranslated region. The sign of the p-values indicates the 

direction of the risk allele. 


