133 research outputs found

    Microbiota Modification with Probiotics Induces Hepatic Bile Acid Synthesis via Downregulation of the Fxr-Fgf15 Axis in Mice

    Get PDF
    Gut microbiota influences host health status by providing trophic, protective, and metabolic functions, including bile acid (BA) biotransformation. Microbial imprinting on BA signature modifies pool size and hydrophobicity, thus contributing to BA enterohepatic circulation. Microbiota-targeted therapies are now emerging as effective strategies for preventing and/or treating gut-related diseases. Here, we show that gut microbiota modulation induced by VSL#3 probiotics enhances BA deconjugation and fecal excretion in mice. These events are associated with changes in ileal BA absorption, repression of the enterohepatic farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) axis, and increased hepatic BA neosynthesis. Treatment with a FXR agonist normalized fecal BA levels in probiotic-administered mice, whereas probiotic-induced alterations in BA metabolism are abolished upon FXR and FGF15 deficiency. Our data provide clear in vivo evidence that VSL#3 probiotics promote ileal BA deconjugation with subsequent fecal BA excretion and induce hepatic BA neosynthesis via downregulation of the gut-liver FXR-FGF15 axis

    On the use of COSMO/SkyMed data and Weather Models for interferometric DEM generation

    Get PDF
    AbstractThis work experiments the potentialities of COSMO/SkyMed (CSK) data in providing interferometric Digital Elevation Model (DEM). We processed a stack of CSK data for measuring with meter accuracy the ground elevation on the available coherent targets, and used these values to check the accuracy of DEMs derived from 5 tandem-like CSK pairs. In order to suppress the atmospheric signal we experimented a classical spatial filtering of the differential phase as well as the use of numerical weather prediction (NWP) model RAMS. Tandem-like pairs with normal baselines higher than 300 m allows to derive DEMs fulfilling the HRTI Level 3 specifications on the relative vertical accuracy, while the use of NWP models still seems unfeasible especially for X-band

    Ground instability detection using PS-InSAR in Lanzhou, China

    Get PDF
    This paper reports on the application of radar satellite data and Persistent Scatterer Interferometry (PS-InSAR) techniques for the detection of ground deformation in the semi-arid loess region of Lanzhou, northwestern China. Compared with Synthetic Aperture Radar Interferometry (InSAR), PS-InSAR overcomes the problems of temporal and geometric de-correlation and atmospheric heterogeneities by identifying persistent radar targets (PS) in a series of interferograms. The SPINUA algorithm was used to process 40 ENVISAT ASAR images for the study period 2003–2010. The analysis resulted in the identification of over 140000 PS in the greater Lanzhou area covering some 300 km2. The spatial distribution of moving radar targets was checked during a field campaign and highlights the range of ground instability problems that the Lanzhou area faces as urban expansion continues to accelerate. The PS-InSAR application detected ground deformations with rates up to 10 mm a−1; it resulted in the detection of previously unknown unstable slopes and two areas of subsidence. Lanzhou is the capital of Gansu Province and is one of the most important industrial cities in NW China (Fig. 1). The 12th Five-Year Plan and the 2011 National Economic and Social Development Statistical Bulletin of Lanzhou City indicate that the gross domestic product (GDP) of Lanzhou more than doubled in the last decade, reaching some 136 billion Yuan (c. £13.6 billion). This is associated with a rapid increase in the urban population and current forecasts suggest that the remaining undeveloped land can sustain further development for only some 10–15 years (Yao 2008). Increasingly, people have to encroach on marginal areas having a greater potential for ground instability. Since 1949, a variety of geohazards (mainly comprising landslides, debris flows, soil collapse, subsidence and floods) in Lanzhou have caused some 676 deaths and an estimated cumulative direct economic loss of some 756 million Yuan (Ding & Li 2009; Dijkstra et al. 2014). It is expected that further casualties and economic impacts will result in this unstable landscape unless a better understanding of the spatial distribution and causes of typical geohazards involving ground instability can be implemented in the development of land-use management practices, urban planning and the design of mitigation strategies. Satellite-based radar interferometry provides an opportunity to map ground deformation over large areas of interest. This paper highlights the use of PS-InSAR (Permanent Scatterer Synthetic Aperture Radar Interferometry) in a region where an incomplete ground instability inventory exist

    Integration of persistent scatterer interferometry and ground data for landslide monitoring: the Pianello landslide (Bovino, Southern Italy)

    Get PDF
    We present an example of integration of persistent scatterer interferometry (PSI) and in situ measurements over a landslide in the Bovino hilltop town, in Southern Italy. First, a wide-area analysis of PSI data, derived from legacy ERS and ENVISAT SAR image time series, highlighted the presence of ongoing surface displacements over the known limits of the Pianello landslide, located at the outskirts of the Bovino municipality, in the periods 1995–1999 and 2003–2008, respectively. This prompted local authorities to install borehole inclinometers on suitable locations. Ground data collected by these sensors during the following years were then compared and integrated with more recent PSI data from a series of Sentinel-1 images, acquired from March 2014 to October 2016. The integration allows sketching a consistent qualitative model of the landslide spatial and subsurface structure, leading to a coherent interpretation of remotely sensed and ground measurements. The results were possible thanks to the synergistic operation of local authorities and remote sensing specialists, and could represent an example for best practices in environmental management and protection at the regional scale

    MULTI-CHROMATIC ANALYSIS OF INSAR DATA: VALIDATION AND POTENTIAL

    Get PDF
    ABSTRACT The present paper presents the results of the application of Multi Chromatic Analysis (MCA) for height retrieval by processing both AES-1 airborne data and satellite TerraSAR-X data. In particular, a test of the robustness of the MCA technique with respect to total processed bandwidth has been performed through comparison of results from datasets with bandwidths spanning form 100 to 400 MHz. A first validation of the mentioned technique has been carried out by comparing the retrieved heights w.r.t. ground elevation from external SRTM DEM, as well as by verifying the reliability of the fringe classifications based on the integer number of phase cycles computed through MCA. Results are presented and commented by addressing potential and limitation of the technique

    Enterocyte superoxide dismutase 2 deletion drives obesity

    Get PDF
    Compelling evidence support an involvement of oxidative stress and intestinal inflammation as early events in the predisposition and development of obesity and its related comorbidities. Here, we show that deficiency of the major mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) in the gastrointestinal tract drives spontaneous obesity. Intestinal epithelium-specific Sod2 ablation in mice induced adiposity and inflammation via phospholipase A2 (PLA2) activation and increased release of omega-6 polyunsaturated fatty acid arachidonic acid. Remarkably, this obese phenotype was rescued when fed an essential fatty acid-deficient diet, which abrogates de novo biosynthesis of arachidonic acid. Data from clinical samples revealed that the negative correlation between intestinal Sod2 mRNA levels and obesity features appears to be conserved between mice and humans. Collectively, our findings suggest a role of intestinal Sod2 levels, PLA2 activity, and arachidonic acid in obesity presenting new potential targets of therapeutic interest in the context of this metabolic disorder

    Enterocyte superoxide dismutase 2 deletion drives obesity

    Get PDF
    Compelling evidence support an involvement of oxidative stress and intestinal inflammation as early events in the predisposition and development of obesity and its related comorbidities. Here, we show that deficiency of the major mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) in the gastrointestinal tract drives spontaneous obesity. Intestinal epithelium-specific Sod2 ablation in mice induced adiposity and inflammation via phospholipase A2 (PLA2) activation and increased release of omega-6 polyunsaturated fatty acid arachidonic acid. Remarkably, this obese phenotype was rescued when fed an essential fatty acid-deficient diet, which abrogates de novo biosynthesis of arachidonic acid. Data from clinical samples revealed that the negative correlation between intestinal Sod2 mRNA levels and obesity features appears to be conserved between mice and humans. Collectively, our findings suggest a role of intestinal Sod2 levels, PLA2 activity, and arachidonic acid in obesity presenting new potential targets of therapeutic interest in the context of this metabolic disorder

    Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    Get PDF
    It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signalling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β (LXR/LXRβ), peroxisome proliferator-activated receptor γ (PPAR-γ), estrogen receptors α/β (ERα/β) and sterol regulatory element-binding proteins (SREBPs) in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed
    • …
    corecore