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Abstract
This work experiments the potentialities of COSMO/SkyMed (CSK) data in providing 
interferometric Digital Elevation Model (DEM). We processed a stack of CSK data for 
measuring with meter accuracy the ground elevation on the available coherent targets, and 
used these values to check the accuracy of DEMs derived from 5 tandem-like CSK pairs. 
In order to suppress the atmospheric signal we experimented a classical spatial filtering 
of the differential phase as well as the use of numerical weather prediction (NWP) model 
RAMS. Tandem-like pairs with normal baselines higher than 300 m allows to derive DEMs 
fulfilling the HRTI Level 3 specifications on the relative vertical accuracy, while the use of 
NWP models still seems unfeasible especially for X-band.
Keywords: SAR Interferometry, COSMO/SkyMed, numerical weather model.

Introduction
Digital Elevation Model (DEM) products for Earth observation space-borne applications are 
being to play a role of increasing importance due to the new generation of high resolution 
sensors (both optical and SAR). These new sensors demand elevation data for processing 
and, on the other hand, they provide new possibilities for DEM generation. Till now, for 
what concerns interferometric DEM, the Shuttle Radar Topography Mission (SRTM) 
has been the reference product for scientific applications for regions between -54 and 60 
degrees latitude. SRTM mission [Rabus et al., 2003] had the challenging goal to meet the 
requirements for a homogeneous and reliable DEM fulfilling the DTED-2 specifications 
[NIMA, 2000]: 12÷15 m of relative vertical accuracy, 18 m of absolute vertical accuracy 
and 30 m of spatial resolution. However, the new generation of high resolution sensors 
(including SAR) pose new requirements for elevation data in terms of vertical precision 
and spatial resolution. DEM are usually used as ancillary input in different processing steps 
as for instance geocoding and Differential SAR Interferometry (DInSAR). In this context, 
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the recent SAR missions TerraSAR-X (TSX) and TanDEM-X (TDX) from DLR, as well as 
COSMO/SkyMed (CSK) constellation from ASI can play a promising role thanks to their 
high resolution both in space and time. In a formation flight at distances of a few kilometers 
down to less than 200 meters, TSX (in orbit since June 2007) and TDX (launched in 2010) 
are synchronously recording data in Stripmap Mode (3 m of spatial resolution), with the aim 
of providing a DEM for the whole Earth surface fulfilling the HRTI Level 3 specifications 
[Krieger et al., 2007]: 2÷4 m of relative vertical accuracy, 10 m of absolute vertical accuracy 
and 12 m of spatial resolution.
CSK mission is instead a constellation of four satellite SAR sensors, designed for ensuring 
Earth monitoring with a short revisit time (up to 12 hours for the full CSK constellation) 
[Battazza et al., 2009; Covello et al., 2010]. Recent scientific works [Bovenga et al., 2012; 
Reale et al., 2011] have shown the advantages of using CSK in the monitoring through 
SAR interferometry (InSAR) terrain deformations caused for instance by landslides and 
earthquakes. Moreover, this mission, as the TSX and the Radarsat-2 missions, provides 
spatial resolutions from 1 m to 3 m (for Spotlight and Stripmap modes respectively), i.e. 
one order of magnitude better than the previously available satellite SAR data. Thanks to 
the high spatial resolution, CSK appears to be very promising in monitoring man-made 
structures, such as buildings, bridges, railways and highways, thus enabling new potential 
applications (urban applications, precise DEM, etc.). The present work investigates the 
potentialities of the CSK constellation for ground elevation measurement with particular 
attention devoted to checking the possibility of meeting the HRTI Level 3 specifications for 
DEM generation. 
Actually, CSK offers a “tandem-like” interferometry configuration. Differently than a 
tandem configuration, where the satellites are flying in close proximity (as for TSX and 
TDX), the “tandem-like” one consists in a “one-day” relative phasing between a satellite 
couple [Covello et al., 2010]. Thanks to the wide range bandwidth (up to more than 300 
MHz for Spotlight acquisitions) CSK interferometric pairs are usually affected by a limited 
relative spectral shift and consequent geometrical decorrelation [Zebker and Villasenor, 
1992]. Hence, the main issue in the exploitation of CSK interferometric products for 
topographic mapping is represented by both temporal decorrelation and atmospheric phase 
artifacts [Hanssen, 2001].
In the case of high coherence and assuming no movement and successful orbital error 
removal, the main problem in height computation derives from the atmospheric 
contribution. Different strategies can be adopted to filter out this signal. By processing 
a stack of images and through advanced multi-temporal interferometric analysis [Ferretti 
et al., 2001; Berardino et al., 2001] it is possible to identify targets on the ground which 
behave coherently in time. For these persistent scatterers (PS), besides the displacement, 
also the elevation can be measured reaching metric accuracy [Perissin and Rocca, 2006]. 
These techniques allow to filter out the atmospheric signal thanks to its decorrelation in 
time and correlation in space. The main drawback is related to the availability of coherent 
targets on the area of interest. It was demonstrated [Bamler et al., 2009; Prati et al., 2010; 
Bovenga et al., 2012] that high resolution SAR sensors (such as CSK) allow to increase the 
density of the measurable targets, making this approach to height measurement valuable. 
Another possible strategy consists of processing tandem-like high resolution interferometric 
pairs through a standard interferometric processor. In order to identify and remove the 
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atmospheric artefacts, the differential phase field can be generated by subtracting the 
reference height derived by a low resolution DEM as, for instance, the SRTM product at 
3 arcsec (resolution cell of 90x90 m2). Then, provided that a strong height sensitivity is 
available, the phase contributions related to atmosphere and to the residual topography 
can be separated by using either ad hoc high-pass filtering or the outcomes of a Numerical 
Weather Prediction (NWP) model. The estimated residual topography may hence improve 
the accuracy of the reference DEM. 
The stacking approach [Sandwell and Sichoix, 2000] can also be used to filter out the 
atmospheric artifacts through a temporal average of several independent DEM’s. However, 
it is really uncommon to have an adequate number of tandem-like pairs to perform a reliable 
atmospheric signal suppression. 
In recent years the use of NWP modelling in the framework of SAR interferometry has been 
increasingly experimented showing in general good agreement for the long wavelength 
features, but not for small turbulent processes [Pielke et al., 1992]. One of the problems 
arising when using NWP models is that the spatial resolution does not match that of SAR 
data in particular when dealing with high resolution sensors (as CSK). Further investigations 
concerning this issue are generally claimed.
This work presents results obtained by processing high resolution CSK acquisitions through 
standard SAR Interferometry as well as multi-pass interferometry with the aim of measuring 
ground elevation. Moreover, we investigated the feasibility of using NWP modelling to 
mitigate the atmospheric artefacts affecting the interferometric phase. 
We first processed through the SPINUA algorithm [Bovenga et al., 2004] a stack of CSK 
data acquired over Parkfield (California, USA), measuring with meter accuracy the ground 
elevation of available coherent targets. Then we used this set of measurements as reference 
values to check the accuracy of the height inference obtained by processing 5 tandem-like 
CSK Spotlight pairs with different values of the normal baseline (and accordingly height 
sensibilities). The results are analysed with respect to the HRTI Level 3 specifications for 
DEM generation. We also attempted to support the tandem-like CSK processing by using 
the interferometric atmospheric phase contribution estimated by using the NWP model 
named RAMS (Regional Atmospheric Modeling System) [Pielke et al., 1992]. NWP model 
outputs were also validated by using radiosonde records as well as GPS measurements.

Multi-temporal interferometric analysis for height measurements
Multi-temporal interferometric analysis, as Persistent Scatterer Interferometry (PSI) 
[Ferretti et al., 2001], provides the following products: i) the displacement signal occurred 
within the time interval covered by the images; ii) the atmospheric component affecting 
each image also known as Atmospheric Phase Screen (APS); iii) the residual topographic 
error computed with respect to the DEM used in the processing. This latter can be used to 
refine the DEM on the PS and, consequently, to improve the geocoding of PSI products. The 
accuracy of target positioning achievable by means of the interferometric multi-temporal 
analysis has been proved, by using ERS and ENVISAT SAR data, to be in the order of 1 m 
in the three dimensions [Perissin and Rocca, 2006]. Even though a quantitative evaluation 
of the positioning is not still available in the case of high resolution X-band PSI, it appears 
to be even better than for the C-band medium resolution data due to the higher spatial 
resolution, the shorter wavelength and the improved phase quality [Crosetto et al., 2010].
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Figure 1 - Yellow and red frames refer respectively to the Stripmap and Spotlight CSK images 
ground coverage. Background optical image is from Google Earth (GE).

 Figure 2 - Spatial and temporal baseline distribution for (A) stripmap and (B) spotlight dataset. The 
reference time is set to the acquisition date of master image: 10.08.2010 for the spotlight dataset (A) 
and 23.06.2010 for the Stripmap dataset (B).
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The CSK constellation acquires data from its four SAR X-band satellites in several imaging 
modes providing different spatial resolutions, polarizations and ground coverage. For the 
present study, we processed two stacks of CSK images acquired over Parkfield (California, 
USA) (see Fig. 1) both in Stripmap and Spotlight modes with resolution cell’s sizes of 3x3 m2 
and 1x1 m2 respectively. Thanks to the high spatial resolution, high accuracy is expected for 
the height measurements which can then be used as reference values to check the accuracy of 
the DEM obtained by the differential interferometric processing of tandem-like pairs.
The Stripmap dataset (yellow frame in Figure 1) consists of 48 right-looking images acquired 
between July, 2009 and February 2011 along descending pass in VV polarization at a look angle 
of 30.6 deg (beam H4-05). The Spotlight dataset (red frame in Figure 1) consists of 33 right-
looking images acquired between March, 2010 and June 2011 along descending pass in VV 
polarization at a look angle of 30.9 deg (beam ES-08). Figure 2 shows the scatter plot of the 
temporal (Bt) and spatial (Bn) baselines for the Stripmap (A) and the Spotlight datasets (B).
Different studies [Bamler et al., 2009; Prati et al., 2010; Bovenga et al., 2012] already proved 
that by increasing the spatial resolution of the SAR sensor the density of the coherent targets 
increases as well. According to this statement, we used the heights computed by processing 
the Spotlight dataset as reference values for the following analysis, while the result coming 
from the Stripmap dataset was used to cross-validate the PSI processing.
PSI processing was performed through the SPINUA (Stable Point INterferometry over Un-
urbanised Areas) algorithm [Bovenga et al., 2004; Bovenga et al., 2006]. The processing 
chain is the result of a joint effort of the Remote Sensing Group of the Department of 
Physics at Politecnico di Bari and the ISSIA-CNR institute of Bari. SPINUA has been 
developed with the aim of detecting and monitoring coherent PS targets in non- or scarcely-
urbanized areas. The processing chain has been further updated in order to deal properly 
with X-band data from both CSK and TSX. 
PSI processing was carried out by using a an SRTM DEM at 1 arcsec which has a resolution 
size of 30 x 30 m2. The ground elevation ranges from 450 m up to 950 m. Although 500 m 
of topography variation is not the optimum for a study aimed at evaluating the performance 
of DEM reconstruction, this test site provides the uncommon opportunity to have available 
two multi-temporal CSK datasets as well as several Spotlight tandem-like pairs. 
Figure 3 shows the residual topographic error map computed with respect to SRTM DEM 
at 1 arcsec by processing the Spotlight (left) and Stripmap (right) datasets. Although the site 
is non urbanized, the PSI results show good coverage of the area of interest, especially in 
the case of Spotlight data which provides a density of more than 70000 PS/km2. In the case 
of Stripmap data the density drops down to 2200 PS/km2. The areas suffering of PS-lack 
coincide mainly with vegetation cover or slopes affected by layover and shadowing. 
Both datasets were acquired along descending passes with the same incident angle, thus 
ensuring the proximity of the scattering centre measured by the two acquisition modes on 
the same coherent targets on the ground. Hence, the PSI measurements can be validated by a 
cross comparison between the results obtained by processing the two independent datasets. 
Figure 4-A and Figure 4-B show respectively the histogram of the height differences and 
the scatter plot between the height values derived by processing the two datasets. The 
correlation coefficient of 0.99 proves the good agreement between the results. The standard 
deviation (STD) of about 0.6 m is in line with indications coming from previous results 
[Perissin and Rocca, 2006; Crosetto et al., 2010] proving the potential of PSI to provide sub-
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metric precision of height measurements. The present figure could even be overestimated due 
to the non perfect coincidence of the scattering centres measured for the same target by the two 
acquisition modes (Stripmap and Spotlight) which have different sizes of the resolution cell.

Figure 3 - Height corrections with respect to an SRTM DEM at 1 arcsec computed by using 
CSK Spotlight (left) and Stripmap (right) data. 

Figure 4 - (A) Histogram of the differences between heights computed by processing Spotlight and 
Stripmap data. (B) Scatter plot between the heights measurements derived by the two datasets.
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The correction provided by the multi-temporal analysis is within [-10 m, 10 m] (see color 
bar in Figure 3). The resolution of the product is that of the input SAR data (1x1 m2 for 
the Spotlight dataset). The approach is thus able to refine both the accuracy and the spatial 
resolution of the reference DEM but only where coherent targets are available. 

Exploitation of interferometric tandem-like pairs
In order to assess the potentials of CSK standard interferometry for topographic mapping, 5 
CSK Spotlight pairs (listed in Table 1) have been selected according to coherence conditions 
as well as to the height sensibilities. The latter is defined in terms of height of ambiguity ha 
which is inversely proportional to the normal baseline B=  [Hanssen, 2001] (all values are 
reported in Table 1).

Table 1 - List of tandem-like spotlight pairs selected in the present study.

Tandem Pair ID #1 #2 #3 #4 #5

Master Date 2010/06/23 2010/07/25 2010/09/27 2010/04/04 2010/04/20

Slave Date 2010/06/24 2010/07/26 2010/09/28 2010/04/05 2010/04/21

Master Sensor CSK-S2 CSK-S2 CSK-S2 CSK-S2 CSK-S2

Slave Sensor CSK-S3 CSK-S3 CSK-S3 CSK-S3 CSK-S3

B=
38.1 m 113.5 m 147.2 m 317.9 m 361.2 m

ah 171.1 m 57.5 m 44.3 m 20.3 m 18.0 m

The InSAR processing of high resolution X-band SAR data requires some ad-hoc 
refinements. The more relevant concerns the image alignment which is a crucial step in the 
interferogram generation process, since 1/8 pixel accuracy is required to avoid significant 
loss of interferometric phase coherence [Hanssen, 2001]. In case of rough topography and 
long baselines, standard coregistration methods, based on 2D polynomial modeling of the 
warp functions, becomes inaccurate, leading to local misregistrations. These effects increase 
with the spatial resolution of the data [Nitti et al., 2011], thus becoming particularly critical 
in case of spotlight data. An improved, DEM-assisted image coregistration procedure should 
be adopted for providing higher-order prediction of the offset vectors [Nitti et al., 2011]. In 
particular, in the present case, a DEM-assisted approach is strongly recommended due to: 
i) the high spatial resolution of CSK data; ii) the rough topography; iii) the values of CSK 
orbital tube diameter which can be longer than 1 km (while TSX rarely exceeds 250m ).
Another source of decorrelation of the interferometric phase [Zebker and Villasenor, 1992] 
depends on the shift between the Doppler centroid frequencies, fDc, of the tandem-like 
acquisitions. SAR images acquired by different satellites of the CSK constellation, could 
show considerable difference between fDc values. In Figure 5 we report, for each spotlight 
interferogram of Table 1, the trend along azimuth direction of the difference between the fDc 
values of master and slave acquisitions, after coregistration. Difference values are always 
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above the 30% of the azimuth bandwidth (Baz ~7.9 KHz), due to a systematic shift of about 
1.3 km along the track direction, between the ground coverage of images acquired by the 
satellites S2 (CSK-S2) and S3 (CSK-S3). This misalignment can be explained in terms of 
different pointing directions of the SAR antennas on the two satellites, and was measured on 
several others CSK datasets. This source of decorrelation can be minimized by performing 
a space-variant common-bandwidth filtering of the interferograms. 

Figure 5 - Trends of the difference between the fDc values of master and slave acquisitions, along 
azimuth direction. The variation of the Doppler centroid frequency along range direction is instead 
negligible with respect to the azimuth bandwidth.

The generation of DEM requires the unwrapping of the interferometric phase [Hanssen, 
2001]. In order to reduce the interferometric phase gradient and consequently the criticality 
of phase unwrapping processing, the differential phase field can be used instead of the 
original one. We generated the differential phase fields by subtracting the reference height 
derived by the SRTM DEM at 3-arcsec freely available for the area of interest (AOI). The 
latter was chosen instead of the SRTM DEM at 1-arcsec in order to draw more general 
conclusions, since the coarser SRTM version is available worldwide within - 60 and 60 
degrees of latitude. Figure 6 shows the wrapped DInSAR phase fields of the tandem-like 
pairs listed in Table 1.
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Figure 6 - Wrapped DInSAR Phase field w/o any filtering.

A lower interferometric coherence is clearly visible in Figure 6 for the two tandem pairs of 
April 2010 (in particular for the second one). This coherence loss can be explained in terms 
of geometrical decorrelation which increases with the spatial baseline and the terrain slope 
[Hanssen, 2001]. These two pairs indeed have the highest values of B=

(see Tab. 1), and the 
low coherence values occur mainly on areas with steep topography. Further contribution to 
coherence loss is the sensitivity of the short X-band wavelength (3.1 cm) to small changes in 
the scattering characteristics. METeorological Aerodrome Reports [METAR], released by 
the two ground meteorological stations closer to the AOI (Paso Robles and Lemoore NAS, 
respectively 2 and 35 km distant from the stripmap frame), confirm the presence of rain 
just few hours before the two slave acquisitions of April 2010 (see Tab. 2), which induces 
changes in the backscattering properties of the soil. Finally, a secondary decorrelation cause 
can be related to the Doppler centroid separation between master and slave acquisitions 
which is maximum for these two interferograms as results from Figure 5: in particular for 
the pair acquired in the second half of April 2010, it reaches the 40% of Baz. 

Table 2 - 10-hour cumulated rain data (up to acquisition times of April 5 and 21, 2010 SAR images), 
measured by the two ground meteorological stations closer to the AOI (no precipitation is recorded 
instead for the other SAR acquisitions of Table 1).

Aerodrome ICAO code Location Date: 2010/04/05 Date: 2010/04/21

Lemoore NAS, CA KNLC 36.317°N - 119.950°W 0.5 mm 13.5 mm
Paso Robles, CA KPRB 35.667°N -120.633°W 2.3 mm 3.3 mm

In order to avoid unwrapping artifacts, DInSAR phase fields were pre-filtered through the 
efficient algorithm proposed by Goldstein and Werner [1998], still preserving a final spatial 
resolution compatible with HRTI level 3 products (< 12x12 m2). Phase unwrapping was 
then performed by means of the SNAPHU algorithm [Chen and Zebker, 2001, 2002].
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Because of 1 day separation between the tandem-like acquisitions as well as the geophysical 
setting of the AOI, no ground displacements are expected. Hence, the differential phase 
is related mainly to the residual topography and to the difference between atmospheric 
conditions at the times of the two acquisitions. Since our goal is the refinement of the 
reference DEM by measuring the residual topography, we need to identify and to filter 
out the atmospheric contributions to the interferometric phase. To this aim we adopted 
two different strategies: the use of NWP models, discussed in the next section, and the ad 
hoc filtering of the differential phase field. This latter exploits the good coherence level 
of tandem-like pairs (low temporal decorrelation) and the well known spatial statistical 
properties of the SAR phase delay induced by the low atmosphere [Hanssen, 2001]. In 
particular, we estimated the atmospheric signal by filtering the unwrapped DInSAR 
phase through an adaptive Gaussian low-pass filtering [Wei et al., 2010]. The hypothesis 
underlying this approach is that the low pass component of the topography is properly 
removed by the reference DEM subtraction performed during the differential processing 
[Crosetto et al., 1999]. If so, the main components of the differential phase would be the 
atmospheric signal and the high pass component of the topographic phase. 

Figure 7 - Residual topography after APS removal through adaptive low-pass filtering. Orographic 
features are much more evident for longer baselines, because of the higher height sensitivity.

Figure 7 shows for all tandem pairs listed in Table 1 the residual topography computed by 
subtracting from the differential phase the output of the low pass filter and then by applying 
the phase to height conversion.
The interferometric DEMs were then obtained by combining the smooth SRTM DEM 
information (used for generating the differential interferograms) with these high-resolution 
residues provided by the filtered Spotlight interferograms. 



Nitti et al.   COSMO/SkyMed and Weather Models for InSAR DEM generation

260

Result analysis
In order to evaluate the quality of the interferometric DEMs derived in the previous section, 
we used as benchmark the heights inferred through a PSI multi-temporal analysis which, as 
detailed previously, result highly reliable. The vertical precision of the interferometric DEM 
was evaluated in terms of standard deviation (STD) of the height differences computed 
with respect to the PSI estimations. 
Let us discuss first the results achieved through the adaptive filtering approach. The trend 
of the standard deviations of height differences as function of the corresponding normal 
baselines B=

 is plotted on the left of Figure 8 for both the unfiltered and filtered products.
The interferometric height precisions are always better than those achieved over the specific 
AOI by both SRTM products at 3- and 1-arcsec (DTED levels 1 and 2, respectively), as 
shown in Figure 8. The only exception is represented by tandem-like pair #1, due to its very 
poor height sensitivity.
Apart from the July 2010 tandem pair (labeled #2 in Table 1), STD values – after filtering 
– exhibit a decreasing trend with B= , as expected due to the increasing height sensitivity. 

Figure 8 - (Left) Performances of the adaptive filtering are expressed in terms of STD and STD_REL 
values of the differences between the heights derived through multi-temporal analysis and tandem-
like processing pairs (line). (Right) Performances of the APS mitigation approach through RAMS 
predictions are expressed in terms of STD values of the height difference with respect to results of 
the PSI analysis for both NAM and ECMWF boundary conditions.

Tandem-like pair #2 behaves even better than what we would expect according to its 
baseline: this is most likely due to the limited Doppler decorrelation affecting this pair with 
respect to the others (Fig. 5).
By further inspecting Figure 8, we may conclude that the adaptive Gaussian filtering 
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improves the height precision of all interferometric DEMs. The mitigation of atmospheric 
artifacts is obviously more evident for shorter baselines, where, due to the low height 
sensitivity, the atmospheric signal dominates the interferometric phase. 
The filtering leads to a considerable improvement also for the tandem-like pair #3 and 
#4 which show a final STD below 3m. For the interferometric DEM #5, derived from the 
tandem pair with the longest B=

 (>350 m), the STD value after filtering is even lower than 2 
m, but the benefit due to the adaptive filtering is in this case much less appreciable. Possible 
concurrent causes for this behavior are a particularly smooth spatial distribution of the 
atmospheric signal, and the long baseline which makes the topographic component of the 
interferometric phase stronger than the atmospheric signal. 
In order to characterize the relative, or point-to-point, vertical accuracy of the interferometric 
products, we adopted a second figure of merit, referred hereafter as STD_REL, consisting 
in the standard deviation of the differences of the relative heights between neighboring 
pixels [Gesch, 2007].
For each PS pixel an unique neighboring pixel coming from the tandem-like interferometric 
processing was identified resulting in a set of 108000 pairs. No reference control point 
appears in more than one pair in order to ensure statistical independence of the measures. 
Distance between neighboring points has been selected to range between 70 m and 100 m. 
Hence, because of the spatial low-frequency characteristic of the APS signal, turbulences 
are not expected to significantly affect STD_REL values. Therefore, this figure may be 
able to check whether or not the adaptive filtering was capable to adequately preserve the 
high-frequency signal related to the residual topography while filtering out the atmospheric 
phase artifacts. The values reported in Figure 8 show that STD_REL never worsen after the 
filtering thus confirming the reliability of the procedure. In particular, the standard deviation 
of relative differences is around 1.2 m for tandem pair #5, i.e. less than 2 m in terms of 90% 
confidence level. 
These results indicate that normal baselines higher than 300 m are required for fulfilling 
the HRTI Level 3 specifications on the relative vertical accuracy when generating 
interferometric DEMs with COSMO/SkyMed in tandem-like configuration. The theoretical 
study in [Krieger et al., 2005] carried out for the TDX mission, estimates a minimum value 
for normal baseline of about 150 m (for a monostatic configuration). The higher value 
measured in our case can be explained in terms of both temporal and Doppler decorrelations 
which can be neglected in the case of TDX mission.

Exploitation of interferometric tandem-like pairs
In this section we investigate the potentials of NWP models to provide independent 
estimates of the Atmospheric Path Delay (APD) suitable to mitigate the interferometric 
phase artifacts (estimated by the APS) due to the hydrostatic and turbulent components of 
the lower layers of the atmosphere. This issue has recently become of great interest among 
experts of SAR interferometry and thus it deserves more investigations. 
The NWP models provide 3D fields of all the atmospheric variables influencing the 
refractive index at the SAR acquisition time. These outcomes are used to compute over the 
3D terrain grid the scaled-up refractive index N = 106(n-1). According to [Rüeger, 2002a], 
in the typical SAR bands (L, C and X) the refractivity index can be expressed through 
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a closed-form formula which accounts for the hydrostatic (Nhyd), the wet (Nwet) and the 
ionosphere (Niono) components expressed as follows [Fornaro and Paglia, 2012]: 
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where P is the total pressure (mbar), T is the temperature (K), e is the water vapor partial 
pressure (mbar), f is the radar frequency, ne is the electronic density of the ionosphere and 
Wcloud is the cloud water content (g m-3). 
Coefficients k1 , k2 , and k3 have been determined empirically in different studies as 
discussed in [Rüeger, 2002b]. The National Centers of Environmental Prediction (NCEP) 
has recently adopted for operational use [Cucurull, 2009] the values proposed in [Bevis et 
al., 1994] because able to provide the better forecast scores. The same values for k1 , k2 , and 
k3 coefficients were used in the present study (k1=77.60 K mbar-1, k2=70.4 K mbar-1, with 

122 kkk −=′′ , and k3=3.739#105 K2 mbar-1), while k4=1.45 m3g-1 was derived from [Solheim 
et al., 1999]. 
The integration of the first contribution (Nhyd) on the vertical profile may reach absolute 
values generally close to 2-2.5 m; however, its spatial variability is rather limited except 
for rough topography, where the vertical stratification can be predominant [Hanssen, 2001]. 
The wet contribution Nwet is one order of magnitude lower than the previous one but its 
spatial and temporal variability is much higher [Fornaro and Paglia, 2012]. Water vapor 
partial pressure and cloud water content can be computed from the water vapor mixing ratio 
and the cloud water mixing ratio which are products of NWP models. 
Finally, the Niono component can be neglected for CSK enhanced-spotlight acquisitions 
because of the high X-band carrier frequency (f = 9.6 GHz) and the limited swath extension 
(only 10x10 km2).
In the present work, numerical weather simulations were performed using the Regional 
Atmospheric Modeling System (RAMS), a finite-difference, primitive equation, three-
dimensional non-hydrostatic mesoscale model, originally developed at Colorado State 
University [Pielke et al., 1992]. RAMS offers a large selection of parameterizations for 
turbulent diffusion, solar and terrestrial radiation, moist processes, cumulus convection, 
etc... making this model particularly suitable for small scale features representation: 
boundary layer eddies (10-100 m grid spacing), sub-microscale turbulent flow over 
buildings (1 m grid spacing) and direct wind tunnel experiments (1 cm grid spacing), have 
been successfully simulated with this code [Tremback and Walko, 2004].
The configured RAMS domain for this study is shown in Figure 9. It includes three nested 
grid with increasing spatial resolutions (10 km, 2.5 km and 500 m, respectively). Moreover, 
17 vertical levels were used in the model within the Atmospheric Boundary Layer depth 
(ABL) in order to properly model the spatial variability of the water vapor which is mainly 
concentrated there [Liu et al., 2011]. 
The selected option for long-wave and short-wave radiation parameterizations was the 
scheme proposed by Chen and Cotton [1983] that – at expense of a higher computational 
cost - takes into account the amount of condensate present in the simulated atmosphere. 
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Figure 9 - RAMS domain. Three nested grid are defined with spatial resolutions of 10 km, 
2.5 km and 500 m, respectively.

In order to investigate the potentials of NWP modeling as operational instrument for the 
mitigation of atmospheric artifacts in SAR interferometry, and due the lack of sounding 
stations close to the area covered by the CSK images, RAMS was cold-started in all our 
simulations. NWP models that are cold-started without a data assimilation scheme require 
a “spin-up” time period even longer than 24h for small-scale features (such as water vapor 
spatial variation) to develop [Liu et al., 2011]. According to this, RAMS was set to cover 
a time-span of ~ 50h, starting at 00:00 UTC of the day before the CSK-S2 acquisition 
(occurring at 02.10 UTC) and ending at the tandem CSK-S3 acquisition time.
Besides the model parameters, the boundary condition could play a crucial role as well. To 
assess the impact of initial and boundary conditions on the delay predictions, both analysis 
fields provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) 
and North American Mesoscale model (NAM) have been used for simulations, without 
changing the model settings. NAM data are provided by NCEP with a spatial resolution 
(12 km) and a number of pressure levels (39, between 50 and 1000 mbar) twice better than 
ECMWF. 
The APD prediction for each SAR acquisition was computed by integration of the refractive 
index profile N(r) along the Line of Sight (LOS):
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Since elevation angles are always well above 15 deg for all satellite SAR sensors, the bending 
of the wave path may be neglected [Hanssen, 2001].The actual integration path direction is 
computed pixel by pixel according to the ground profile and to the satellite orbital position. 
The interpolation of the 3D refractive index field along the LOS is performed through an 
inverse distance algorithm, with an increasing spacing from the target on ground towards 
the satellite, following the staggered vertical coordinate system adopted by RAMS. 
Figure 10 shows an example of APD field predicted by RAMS for the acquisition time 
of the April 21, 2010 image, as well as the scatter plots of the single hydrostatic and wet 
components with respect to topographic profile (relative to a reference point). As expected, 
the hydrostatic contribution is highly correlated with topography, while correlation is weak 
for the wet component.
By further comparing RAMS outcomes obtained with NAM and ECMWF boundary 
conditions, we report in Figure 11 the spatial mean of the differences between the APD 
values computed by using the two different boundary conditions. The APD was computed 
along the zenith direction and separately for the hydrostatic and wet components of the 
atmosphere. The error bars are proportional to the STD of the differences. The differences 
for the hydrostatic component are in the order of few millimeters, while they become much 
higher (even in the order of several centimeters) in the case of wet delay. This demonstrates 
that delay predictions may vary considerably given different boundary conditions. 

Figure 10 - (Left) APD derived from RAMS predictions for April 21, 2010 at ~ 02:10 UTC (boundary 
conditions provided by NAM analysis field). (Center) Scatter plot of the hydrostatic contribution 
with respect to topography. (Right) Scatter plot of the wet contribution.

These results, deeply discussed later on, are in line with other recent works [Liu et al., 
2011], and point out the major limit in using NWP models for atmospheric component 
mitigation in SAR interferometry which is related to the centimetric accuracy of the wet 
delay prediction. This is one order of magnitude higher than that required to properly filter 
the interferoemtric phase. In fact, by requiring a sub-meter height accuracy:
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and considering the most favorable case of tandem pair #5, which has the highest height 
sensitivity (ha=18 m), the constraint on the error in slant delay is: 
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Then, assuming independent errors for master and slave, the requirement for the zenith 
delay accuracy is:
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In order to evaluate the performances of RAMS in predicting the troposphere behavior, 
we used the radiosonde records (RAOBS) which are one of the standard observations of 
water vapor [Liu et al., 2011]. Since radiosonde stations are totally absent over the CSK 
frames, the comparison has been carried out over the San Diego area, where it is installed 
the closest radiosonde to the AOI (Station ID: 72293 NKX; lat: 32.85°N, lon: 117.11°W). 
We used 4 RAOBS records from this site to evaluate the corresponding RAMS predictions, 
relative to different dates and times. 

Figure 11 - Comparison of zenith signal delay components computed from RAMS predictions 
with NAM and-ECMWF boundary conditions. A very good agreement is found for the hydrostatic 
contribution (differences less than 5 mm), while ZWD differences may exceed 10 cm.
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The direct comparison between NWP model outputs and observations presents numerous 
difficulties [Buckley et al., 2004]. The major one is related to the fact that the NWP model 
outcomes are spatially averaged over a grid volume while the observations represent point 
measurements. That’s why we preferred to use for the boundary conditions the NAM data 
which have higher resolution than ECMWF. RAMS configuration has not been modified 
during the validation tests with respect to the simulations previously discussed.
The statistics of the results (see Figure 12) indicate that RAMS slightly underestimates the 
total pressure, the air temperature and the water vapor mixing ratio in mean by 9.3 mbar, 
0.6 K and 0.25 g/kg, respectively. The corresponding standard deviations are 9.4 mbar, 
1.62 K and 0.89 g/kg, respectively. According to [1], the deviations of the RAMS outcomes 
with respect to observations tend to cancel out when used for computing, in particular, the 
hydrostatic component of the refractive index.

Figure 12 - Comparison between RAMS predictions and RAOBS records (radiosonde 72293 NKX, 
San Diego). Vertical profiles of (left) total pressure [mbar], (centre) air temperature [K] and (right) 
water vapor mixing ratio [g/kg] difference between RAMS and RAOBS: solid and dashed bold lines 
represent mean profile and standard deviation trend along the profile, respectively. Vertical axes 
represent altitudes in meters.

Results from the above analysis are comparable with the outcomes of different NWP models, like 
WRF, as reported by recent studies [Liu et al., 2011]. We may conclude that RAMS is capable 
to provide reliable predictions of the state variables influencing the value of the refractive index. 
Nevertheless, we need still to assess whether the accuracy of the slant delay pattern derived from 
RAMS predictions is millimetric (as required for an operational use of NWP models for the 
mitigation of the phase artifacts in X-band SAR interferometry) or worse. 
To this aim the APD derived from RAMS has been integrated along zenith direction and 
compared with independent GPS Zenith Total Delay (ZTD) data obtained for sixty GPS 
stations of the UNAVCO consortium available within the inner grid in Figure 9. GPS ZTD 
measurements range between 2.0 and 2.3 m. The experiment has been repeated for different 
times dates and seasons of the year 2010 (see Nitti et al., [2012] for details). Negligible 
biases have been found between GPS ZTD data and ZTD measurements predicted with 



267

European Journal of Remote Sensing - 2013, 46: 250-271

RAMS, with a centimetric RMSE (independent from the boundary conditions). Since ZTD 
data provided by GPS have millimetric accuracy [Zumberge et al., 1997], we may conclude 
that the accuracy achievable with NWP models is one order of magnitude worse, in line with 
the conclusions of recent scientific works [Gong et al., 2011]. APS mitigation through NWP 
models seems therefore to be still unfeasible especially for X-band SAR interferometry, 
where a millimetric accuracy is required because of the short radar wavelength (λ~3 cm). 
This conclusion is confirmed by looking at the STD of the height difference between the 
height values derived from PSI and those obtained by using NWP model predictions to 
remove APS (see right panel in Figure 8). RAMS performances tend to vary considerably 
from one interferogram to another and by changing the boundary conditions. In few specific 
cases (circled in red on the right of Figure 8), quite mitigation of the atmospheric artifacts is 
noticeable, but in all the other tests the height accuracy is strongly worsened. Moreover, the 
adaptive filtering provides always better performances than using RAMS. As confirmed by 
recent works in C-band [Liu et al., 2011], the role of weather models for delay mitigation 
may change oppositely from a delay mitigating to an error contributor. 
Previous results lead anyway to the conclusion that NWP simulations performed with 
boundary conditions provided by global models, even if not suitable for atmospheric 
artifacts mitigation, may however represent an operational instrument for improving the 
absolute horizontal accuracy of spotlight PS maps. No information is indeed provided in 
the annotations of CSK products for the atmospheric path delay, while TSX offers at least 
constant additional corrections [Schubert et al., 2010] that may not guarantee sub-pixel 
accuracy in case of rough topography. 

Conclusions
This work is aimed at experimenting the potentials of CSK in measuring ground elevation as 
well as to assess the feasibility of using numerical weather models to mitigate the atmospheric 
artefacts affecting the interferometric phase. The latter in recent years has become an issue of 
increasing interest thus deserving more investigations and a final assessment. 
We first processed through SPINUA PSI algorithm a stack of CSK data acquired over Parkfield 
(California, USA), measuring with meter accuracy the ground elevation of available coherent 
targets. Then we used this measurements as reference values to check the accuracy of the 
height values obtained by processing 5 tandem-like CSK Spotlight pairs with different height 
sensitivities. In order to suppress the atmospheric artefacts affecting the interferometric phase 
we experimented both a classical spatial filtering of the differential phase field as well as the 
use of the atmospheric fields derived by running the NWP model RAMS. 
The outcomes indicate that by properly filtering the differential interferometric phase derived 
by using CSK tandem-like pairs with normal baselines higher than 300 m, it is possible to 
derive DEMs fulfilling the HRTI Level 3 specifications on the relative vertical accuracy. 
These results would be even improved by reducing the Doppler decorrelation affecting 
the CSK tandem-like pairs due a systematic shift of 1.3 km along the azimuth direction. 
Moreover, the temporal decorrelation, due to the one day separation between acquisitions, 
can be mitigated by selecting images acquired during dry seasons which strongly limit the 
changes in soil properties.
Concerning the mitigation of atmospheric artifacts through NWP models, the RAMS model 
was used to generate and remove from the DInSAR phase the atmospheric contribution to 
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the SAR signal. The RAMS outcomes were compared with independent measurements 
from GPS and radiosondes, and the final height values validated by using the reference 
PSI measurements as done for the filtering approach. Results indicate that the use of NWP 
models it is still unfeasible especially for X-band SAR interferometry. SAR processing 
indeed requires millimetric accuracy in the zenith atmospheric delay while the outcomes 
of the numerical models are in the order of centimenters even using RAMS model which is 
suitable also for small scale features representation. Possible improvements can derive by 
the assimilation of surface observations and soundings in the RAMS weather modeling.
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