640 research outputs found

    Subtrochanteric fractures after long-term treatment with bisphosphonates: a European Society on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis, and International Osteoporosis Foundation Working Group Report

    Get PDF
    Summary: This paper reviews the evidence for an association between atypical subtrochanteric fractures and long-term bisphosphonate use. Clinical case reports/reviews and case-control studies report this association, but retrospective phase III trial analyses show no increased risk. Bisphosphonate use may be associated with atypical subtrochanteric fractures, but the case is yet unproven. Introduction: A Working Group of the European Society on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis and the International Osteoporosis Foundation has reviewed the evidence for a causal association between subtrochanteric fractures and long-term treatment with bisphosphonates, with the aim of identifying areas for further research and providing recommendations for physicians. Methods: A PubMed search of literature from 1994 to May 2010 was performed using key search terms, and articles pertinent to subtrochanteric fractures following bisphosphonate use were analysed. Results: Several clinical case reports and case reviews report a possible association between atypical fractures at the subtrochanteric region of the femur in bisphosphonate-treated patients. Common features of these ‘atypical' fractures include prodromal pain, occurrence with minimal/no trauma, a thickened diaphyseal cortex and transverse fracture pattern. Some small case-control studies report the same association, but a large register-based study and retrospective analyses of phase III trials of bisphosphonates do not show an increased risk of subtrochanteric fractures with bisphosphonate use. The number of atypical subtrochanteric fractures in association with bisphosphonates is an estimated one per 1,000 per year. It is recommended that physicians remain vigilant in assessing their patients treated with bisphosphonates for the treatment or prevention of osteoporosis and advise patients of the potential risks. Conclusions: Bisphosphonate use may be associated with atypical subtrochanteric fractures, but the case is unproven and requires further research. Were the case to be proven, the risk-benefit ratio still remains favourable for use of bisphosphonates to prevent fracture

    The associations between QCT-based vertebral bone measurements and prevalent vertebral fractures depend on the spinal locations of both bone measurement and fracture

    Get PDF
    Summary We examined how spinal location affects the relationships between quantitative computed tomography (QCT)-based bone measurements and prevalent vertebral fractures. Upper spine (T4–T10) fractures appear to be more strongly related to bone measures than lower spine (T11–L4) fractures, while lower spine measurements are at least as strongly related to fractures as upper spine measurements. Introduction Vertebral fracture (VF), a common injury in older adults, is most prevalent in the mid-thoracic (T7–T8) and thoracolumbar (T12–L1) areas of the spine. However, measurements of bone mineral density (BMD) are typically made in the lumbar spine. It is not clear how the associations between bone measurements and VFs are affected by the spinal locations of both bone measurements and VF. Methods A community-based case–control study includes 40 cases with moderate or severe prevalent VF and 80 age- and sex-matched controls. Measures of vertebral BMD, strength (estimated by finite element analysis), and factor of risk (load:strength ratio) were determined based on QCT scans at the L3 and T10 vertebrae. Associations were determined between bone measures and prevalent VF occurring at any location, in the upper spine (T4–T10), or in the lower spine (T11–L4). Results Prevalent VF at any location was significantly associated with bone measures, with odds ratios (ORs) generally higher for measurements made at L3 (ORs = 1.9–3.9) than at T10 (ORs = 1.5–2.4). Upper spine fracture was associated with these measures at both T10 and L3 (ORs = 1.9–8.2), while lower spine fracture was less strongly associated (ORs = 1.0–2.4) and only reached significance for volumetric BMD measures at L3. Conclusions Closer proximity between the locations of bone measures and prevalent VF does not strengthen associations between bone measures and fracture. Furthermore, VF etiology may vary by region, with VFs in the upper spine more strongly related to skeletal fragility.National Institutes of Health (U.S.) (Grants R01AR053986, R01AR/AG041398, T32AG023480, and F31AG041629)National Heart, Lung, and Blood Institute. Framingham Heart Study (NIH/NHLBI Contract N01-HC-25195

    Data Mining Activity for Bone Discipline: Calculating a Factor of Risk for Hip Fracture in Long-Duration Astronauts

    Get PDF
    The factor-of-risk (Phi), defined as the ratio of applied load to bone strength, is a biomechanical approach to hip fracture risk assessment that may be used to identify subjects who are at increased risk for fracture. The purpose of this project was to calculate the factor of risk in long duration astronauts after return from a mission on the International Space Station (ISS), which is typically 6 months in duration. The load applied to the hip was calculated for a sideways fall from standing height based on the individual height and weight of the astronauts. The soft tissue thickness overlying the greater trochanter was measured from the DXA whole body scans and used to estimate attenuation of the impact force provided by soft tissues overlying the hip. Femoral strength was estimated from femoral areal bone mineral density (aBMD) measurements by dual-energy x-ray absorptiometry (DXA), which were performed between 5-32 days of landing. All long-duration NASA astronauts from Expedition 1 to 18 were included in this study, where repeat flyers were treated as separate subjects. Male astronauts (n=20) had a significantly higher factor of risk for hip fracture Phi than females (n=5), with preflight values of 0.83+/-0.11 and 0.36+/-0.07, respectively, but there was no significant difference between preflight and postflight Phi (Figure 1). Femoral aBMD measurements were not found to be significantly different between men and women. Three men and no women exceeded the theoretical fracture threshold of Phi=1 immediately postflight, indicating that they would likely suffer a hip fracture if they were to experience a sideways fall with impact to the greater trochanter. These data suggest that male astronauts may be at greater risk for hip fracture than women following spaceflight, primarily due to relatively less soft tissue thickness and subsequently greater impact force

    Retrospective Study of Serum Sclerostin Measurements in Bed Rest Subjects

    Get PDF
    Animal models and human studies suggest that osteocytes regulate the skeleton s response to mechanical unloading at the cellular level in part by an increase in sclerostin, an inhibitor of the anabolic Wnt pathway. However, few studies have reported changes in serum sclerostin in humans exposed to reduced mechanical loading. Thus, we determined changes in serum sclerostin and bone turnover markers in healthy adult men who participated in a controlled bed rest study. Seven healthy adult men (31 +/- 3 yrs old) underwent 90-day six-degree head down tilt bed rest at the University of Texas Medical Branch in Galveston's Institute for Translational Sciences - Clinical Research Center (ITS-CRC). Serum sclerostin, PTH, serum markers of bone turnover (bone specific alkaline phosphatase, RANKL/OPG, and osteocalcin), urinary calcium and phosphorus excretion, and 24 hour pooled urinary markers of bone resorption (NTX, DPD, PYD) were evaluated pre-bed rest (BL), bed rest day 28 (BR-28), bed rest day 60 (BR-60), and bed rest day 90 (BR-90). In addition, bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry (DXA) at BL, BR-60, and post bed rest day 5 (BR+5). Data are reported as mean +/- standard deviation. We used repeated measures ANOVA to compare baseline values to BR-28, BR-60, and BR-90. RESULTS Consistent with prior reports, BMD declined significantly (1-2% per month) at weight-bearing skeletal sites (spine, hip, femur neck, and calcaneus). Serum sclerostin levels were elevated above BL at BR-28 (+29% +/- 20%, p = 0.003), BR-60 (+42% +/- 31%, p < 0.001), and BR-90 (22% +/- 21%, p = 0.07). Serum PTH levels were reduced at BR-28 (-17% +/- 16%, p = 0.02), BR-60 (-24% +/- 14%, p = 0.03), and returned to baseline at BR-90 (-21% +/- 21%, p = 0.14). Serum bone turnover markers did not change, however urinary bone resorption markers and calcium were significantly elevated following bed rest (p < 0.01). CONCLUSION We observed an increase of serum sclerostin associated with decreased serum PTH and elevated bone resorption markers in otherwise healthy men subjected to long-term immobilization

    About the inevitable compromise between spatial resolution and accuracy of strain measurement for bone tissue: A 3D zero-strain study

    Get PDF
    The accurate measurement of local strain is necessary to study bone mechanics and to validate micro computed tomography (μCT) based finite element (FE) models at the tissue scale. Digital volume correlation (DVC) has been used to provide a volumetric estimation of local strain in trabecular bone sample with a reasonable accuracy. However, nothing has been reported so far for μCT based analysis of cortical bone. The goal of this study was to evaluate accuracy and precision of a deformable registration method for prediction of local zero-strains in bovine cortical and trabecular bone samples. The accuracy and precision were analyzed by comparing scans virtually displaced, repeated scans without any repositioning of the sample in the scanner and repeated scans with repositioning of the samples.The analysis showed that both precision and accuracy errors decrease with increasing the size of the region analyzed, by following power laws. The main source of error was found to be the intrinsic noise of the images compared to the others investigated. The results, once extrapolated for larger regions of interest that are typically used in the literature, were in most cases better than the ones previously reported. For a nodal spacing equal to 50 voxels (498. μm), the accuracy and precision ranges were 425-692. με and 202-394. με, respectively. In conclusion, it was shown that the proposed method can be used to study the local deformation of cortical and trabecular bone loaded beyond yield, if a sufficiently high nodal spacing is used

    Long-term in-vitro precision of direct digital X-ray radiogrammetry

    Get PDF
    Digital X-ray radiogrammetry (DXR) calculates peripheral bone mineral density (BMD) from hand radiographs. The short-term precision for direct DXR has been reported to be highly satisfactory. However, long-term precision for this method has not been examined. Thus, the aim of this study was to examine the long-term in-vitro precision for the new direct digital version of DXR. The in-vitro precision for direct DXR was tested with cadaver phantoms on four different X-ray systems at baseline, 3 months, 6 months, and in one machine also at 12 months. At each time point, 31 measurements were performed. The in-vitro longitudinal precision for the four radiographic systems ranged from 0.22 to 0.43% expressed as coefficient of variation (CV%). The smallest detectable difference (SDD) ranged from 0.0034 to 0.0054 g/cm(2). The in vitro long-term precision for direct DXR was comparable to the previous reported short-term in-vitro precision for all tested X-ray systems. These data show that DXR is a stable method for detecting small changes in bone density during 6-12 months of follow-up
    • …
    corecore