1,667 research outputs found

    ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: towards an understanding of dust processing

    Get PDF
    We present Infrared Space Observatory (ISO) spectra of fourteen isolated Herbig Ae/Be (HAEBE) stars, to study the characteristics of their circumstellar dust. These spectra show large star-to-star differences, in the emission features of both carbon-rich and oxygen-rich dust grains. The IR spectra were combined with photometric data ranging from the UV through the optical into the sub-mm region. We defined two key groups, based upon the spectral shape of the infrared region. The derived results can be summarized as follows: (1) the continuum of the IR to sub-mm region of all stars can be reconstructed by the sum of a power-law and a cool component, which can be represented by a black body. Possible locations for these components are an optically thick, geometrically thin disc (power-law component) and an optically thin flared region (black body); (2) all stars have a substantial amount of cold dust around them, independent of the amount of mid-IR excess they show; (3) also the near-IR excess is unrelated to the mid-IR excess, indicating different composition/location of the emitting material; (4) remarkably, some sources lack the silicate bands; (5) apart from amorphous silicates, we find evidence for crystalline silicates in several stars, some of which are new detections; (6) PAH bands are present in at least 50% of our sample, and their appearance is slightly different from PAHs in the ISM; (7) PAH bands are, with one exception, not present in sources which only show a power-law continuum in the IR; their presence is unrelated to the presence of the silicate bands; (8) the dust in HAEBE stars shows strong evidence for coagulation; this dust processing is unrelated to any of the central star properties (such as age, spectral type and activity).Comment: 15 pages, accepted by A&

    ISO spectroscopy of circumstellar dust in the Herbig Ae systems AB Aur and HD 163296

    Get PDF
    Using both the Short- and Long-wavelength Spectrometers on board the Infrared Space Observatory (ISO), we have obtained infrared spectra of the Herbig Ae systems AB Aur and HD 163296. In addition, we obtained ground-based N band images of HD 163296. Our results can be summarized as follows: (1) The main dust components in AB Aur are amorphous silicates, iron oxide and PAHs; (2) The circumstellar dust in HD 163296 consists of amorphous silicates, iron oxide, water ice and a small fraction of crystalline silicates; (3) The infrared fluxes of HD 163296 are dominated by solid state features; (4) The colour temperature of the underlying continuum is much cooler in HD 163296 than in AB Aur, pointing to the existence of a population of very large (mm sized) dust grains in HD 163296; (5) The composition and degree of crystallization of circumstellar dust are poorly correlated with the age of the central star. The processes of crystallization and grain growth are also not necessarily coupled. This means that either the evolution of circumstellar dust in protoplanetary disks happens very rapidly (within a few Myr), or that this evolution is governed by factors other than stellar mass and age.Comment: 6 pages, 2 figures, accepted for publication in Astronomy & Astrophysic

    Medium-separation binaries do not affect the first steps of planet formation

    Full text link
    The first steps of planet formation are marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk midplane. In this paper we explore whether the first steps of planet formation are affected by the presence of medium-separation stellar companions. We selected two large samples of disks around single and binary T Tauri stars in Taurus that are thought to have only a modest age spread of a few Myr. The companions of our binary sample are at projected separations between 10 and 450 AU with masses down to about 0.1 solar masses. We used the strength and shape of the 10 micron silicate emission feature as a proxy for grain growth and for crystallization respectively. The degree of dust settling was evaluated from the ratio of fluxes at two different mid-infrared wavelengths. We find no statistically significant difference between the distribution of 10 micron silicate emission features from single and binary systems. In addition, the distribution of disk flaring is indistinguishable between the single and binary system samples. These results show that the first steps of planet formation are not affected by the presence of a companion at tens of AU.Comment: To appear in the Astrophysical Journa

    Binarity as a key factor in protoplanetary disk evolution: Spitzer disk census of the eta Chamaeleontis cluster

    Get PDF
    The formation of planets is directly linked to the evolution of the circumstellar (CS) disk from which they are born. The dissipation timescales of CS disks are, therefore, of direct astrophysical importance in evaluating the time available for planet formation. We employ Spitzer Space Telescope spectra to complete the CS disk census for the late-type members of the ~8 Myr-old eta Chamaeleontis star cluster. Of the 15 K- and M-type members, eight show excess emission. We find that the presence of a CS disk is anti-correlated with binarity, with all but one disk associated with single stars. With nine single stars in total, about 80% retain a CS disk. Of the six known or suspected close binaries the only CS disk is associated with the primary of RECX 9. No circumbinary disks have been detected. We also find that stars with disks are slow rotators with surface values of specific angular momentum j = 2-15 j_sun. All high specific angular momentum systems with j = 20-30 j_sun are confined to the primary stars of binaries. This provides novel empirical evidence for rotational disk locking and again demonstrates the much shorter disk lifetimes in close binary systems compared to single star systems. We estimate the characteristic mean disk dissipation timescale to be ~5 Myr and ~9 Myr for the binary and single star systems, respectively.Comment: Accepted by ApJ

    DIGIT survey of far-infrared lines from protoplanetary disks I

    Get PDF
    [abridged] We present far-infrared spectroscopic observations of PMS stars taken with Herschel/PACS as part of the DIGIT key project. The sample includes 22 Herbig AeBe and 8 T Tauri sources. Multiple atomic fine structure and molecular lines are detected at the source position: [OI], [CII], CO, OH, H_2O, CH^+. The most common feature is the [OI] 63micron line detected in almost all of the sources followed by OH. In contrast with CO, OH is detected toward both Herbig AeBe groups (flared and non-flared sources). An isothermal LTE slab model fit to the OH lines indicates column densities of 10^13 < N_OH < 10^16 cm^-2, emitting radii 15 < r < 100 AU and excitation temperatures 100 < T_ex < 400 K. The OH emission thus comes from a warm layer in the disk at intermediate stellar distances. Warm H_2O emission is detected through multiple lines toward the T Tauri systems AS 205, DG Tau, S CrA and RNO 90 and three Herbig AeBe systems HD 104237, HD 142527, HD 163296 (through line stacking). Overall, Herbig AeBe sources have higher OH/H_2O abundance ratios across the disk than do T Tauri disks, from near- to far-infrared wavelengths. Far-infrared CH^+ emission is detected toward HD 100546 and HD 97048. The slab model suggests moderate excitation (T_ex ~ 100 K) and compact (r ~ 60 AU) emission in the case of HD 100546. The [CII] emission is spatially extended in all sources where the line is detected. This suggests that not all [CII] emission is associated with the disk and that there is a substantial contribution from diffuse material around the young stars. The flux ratios of the atomic fine structure lines are consistent with a disk origin for the oxygen lines for most of the sources.Comment: Accepted for publication in A&

    On the interplay between flaring and shadowing in disks around Herbig Ae/Be stars

    Get PDF
    Based on the SED, Herbig stars have been categorized into two observational groups, reflecting their overall disk structure: group I members have disks with a higher degree of flaring than their group II counterparts. We investigate the 5-35 um Spitzer IRS spectra of a sample of 13 group I sources and 20 group II sources. We focus on the continuum emission to study the underlying disk geometry. We have determined the [30/13.5] and [13.5/7] continuum flux ratios. The 7-um flux excess with respect to the stellar photosphere is measured, as a marker for the strength of the near-IR emission produced by the inner disk. We have compared our data to self-consistent passive-disk model spectra, for which the same quantities were derived. We confirm the literature result that the difference in continuum emission between group I and II sources can largely be explained by a different amount of small dust grains. However, we report a strong correlation between the [30/13.5] and [13.5/7] flux ratios for Meeus group II sources. Moreover, the [30/13.5] flux ratio decreases with increasing 7-um excess for all targets in the sample. To explain these correlations with the models, we need to introduce an artificial scaling factor for the inner disk height. In roughly 50% of the Herbig Ae/Be stars in our sample, the inner disk must be inflated by a factor 2 to 3 beyond what hydrostatic calculations predict. The total disk mass in small dust grains determines the degree of flaring. We conclude, however, that for any given disk mass in small dust grains, the shadowing of the outer (tens of AU) disk is determined by the scale height of the inner disk (1 AU). The inner disk partially obscures the outer disk, reducing the disk surface temperature. Here, for the first time, we prove these effects observationally.Comment: 4 pages, 3 figures, accepted by A&

    Spectral Energy Distributions of T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with ISO LWS Observations

    Get PDF
    We improve upon the radiative, hydrostatic equilibrium models of passive circumstellar disks constructed by Chiang & Goldreich (1997). New features include (1) account for a range of particle sizes, (2) employment of laboratory-based optical constants of representative grain materials, and (3) numerical solution of the equations of radiative and hydrostatic equilibrium within the original 2-layer (disk surface + disk interior) approximation. We explore how the spectral energy distribution (SED) of a face-on disk depends on grain size distributions, disk geometries and surface densities, and stellar photospheric temperatures. Observed SEDs of 3 Herbig Ae and 2 T Tauri stars, including spectra from the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO), are fitted with our models. Silicate emission bands from optically thin, superheated disk surface layers appear in nearly all systems. Water ice emission bands appear in LWS spectra of 2 of the coolest stars. Infrared excesses in several sources are consistent with vertical settling of photospheric grains. While this work furnishes further evidence that passive reprocessing of starlight by flared disks adequately explains the origin of infrared-to-millimeter wavelength excesses of young stars, we emphasize how the SED alone does not provide sufficient information to constrain particle sizes and disk masses uniquely.Comment: Accepted to ApJ, 35 pages inc. 14 figures, AAS preprin

    FU Orionis - The MIDI/VLTI Perspective

    Get PDF
    We present the first mid-infrared interferometric measurements of FU Orionis. We clearly resolve structures that are best explained with an optically thick accretion disk. A simple accretion disk model fits the observed SED and visibilities reasonably well and does not require the presence of any additional structure such as a dusty envelope. The inclination and also the position angle of the disk can be constrained from the multibaseline interferometric observations. Our disk model is in general agreement with most published near-infrared interferometric measurements. From the shape and strength of the 8-13 micrometer spectrum the dust composition of the accretion disk is derived for the first time. We conclude that most dust particles are amorphous and already much larger than those typically observed in the ISM. Although the high accretion rate of the system provides both, high temperatures out to large radii and an effective transport mechanism to distribute crystalline grains, we do not see any evidence for crystalline silicates neither in the total spectrum nor in the correlated flux spectra from the inner disk regions. Possible reasons for this non-detection are mentioned. All results are discussed in context with other high-spatial resolution observations of FU Ori and other FU Ori objects. We also address the question whether FU Ori is in a younger evolutionary stage than a classical TTauri star.Comment: 41 pages (aastex style), 11 figures, 8 tables, accepted by Ap

    The Mid-Infrared Emitting Dust Around AB Aur

    Full text link
    Using the Keck I telescope, we have obtained 11.7 micron and 18.7 micron images of the circumstellar dust emission from AB Aur, a Herbig Ae star. We find that AB Aur is probably resolved at 18.7 micron with an angular diameter of 1.2" at a surface brightness of 3.5 Jy/arcsec^2. Most of the dust mass detected at millimeter wavelengths does not contribute to the 18.7 micron emission, which is plausibly explained if the system possesses a relatively cold, massive disk. We find that models with an optically thick, geometrically thin disk, surrounded by an optically thin spherical envelope fit the data somewhat better than flared disk models.Comment: ApJ in press, 4 color figure

    An emission ring at 20 microns around the HAEBE star AB Aurigae: unveiling the disc structure

    Get PDF
    Isolated HAEBE stars are believed to represent an intermediate stage of objects between young stellar objects surrounded by massive, optically thick, gaseous and dusty disks and Vega like stars surrounded by debris disks. The star AB Aur is already known for being surrounded by an intermediate-stage dust disk emitting a fairly large infrared and (sub-)millimetric excess. Until now, the outer disk structure has only been resolved at millimeter wavelengths and at optical wavelength coronographic imaging. We have obtained 20 microns images which show an unexpected ellipse-shaped disk structure in emission at a distance of about 260 AU from the central star. Large azimuthal asymmetries in brightness can be noticed and the center of the ellipse does not coincide with the star. A simple, pure geometrical model based on an emission ring of uniform surface brightness, but having an intrinsic eccentricity succeeds in fitting the observations. These observations give for the first time clues on a very peculiar structure of pre-main-sequence disk geometry, i.e. a non uniform increase in the disk thickness unlike the common usual sketch of a disk with a constant flaring angle. They provide also valuable informations on the disk inclination as well as its dust composition; at such a large distance from the star, only transient heating of very small particles can explain such a bright ring of emission at mid-infrared wavelengths. Finally, the increase of thickness inferred by the model could be caused by disk instabilities; the intrinsic eccentricity of the structure might be a clue to the presence of a massive body undetected yet
    corecore