1,041 research outputs found

    The STARDAMP software: an assessment tool for wheel and rail damper efficiency

    No full text
    STARDAMP (Standardization of damping technologies for the reduction of railway noise) is a Franco-German research project within the DEUFRAKO framework that unites end users, manufacturers and research institutes. The target of STARDAMP is to support the transfer from R&D of wheel and rail dampers to their regular application. A software tool has been developed within STARDAMP that is dedicated to the prediction of the efficiency of wheel and rail dampers. The necessary input can be produced using relatively simple laboratory measurements. The rail response is assessed by combining track decay rates measured on a real track with decay rates measured in laboratory on a free rail that is equipped with dampers. The wheel response is calculated by using a finite element model of the wheel together with measured damping data. The tool is designed not only for the use by experts within the development of wheel and rail dampers. Indeed, a main goal of STARDAMP was to provide an easy-to-use tool to infrastructure managers and public authorities in order to help the decision making process regarding railway noise mitigation measures

    Effect of unsteady wind on drifting snow: first investigations

    Get PDF
    Wind is not always a steady flow. It can oscillate, producing blasts. However, most of the current numerical models of drifting snow are constrained by one major assumption: forcing winds are steady and uniform. Moreover, very few studies have been done to verify this hypothesis, because of the lack of available instrumentation and measurement difficulties. Therefore, too little is known about the possible role of wind gust in drifting snow. In order to better understand the effect of unsteady winds, we have performed both experiments at the climatic wind tunnel at the CSTB (Centre Scientifique et Technique des Bâtiments) in Nantes, France, and in situ experiments on our experimental high-altitude site, at the Lac Blanc Pass. These experiments were carried out collaboratively with Cemagref (France), Météo-France, and the IFENA (Switzerland). Through the wind tunnel experiments, we found that drifting snow is in a state of permanent disequilibrium in the presence of fluctuating airflows. In addition, the in situ experiments show that the largest drifting snow episodes appear during periods of roughly constant strong wind, whereas a short but strong blast does not produce significant drifting snow.&nbsp;</p> <p style='line-height: 20px;'><b>Key words.</b> Drifting snow, blowing snow, gust, blast, acoustic senso

    Complementarity of ultrasound and fluorescence imaging in an orthotopic mouse model of pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is a devastating disease characterized by dismal 5-year survival rates and limited treatment options. In an effort to provide useful models for preclinical evaluation of new experimental therapeutics, we and others have developed orthotopic mouse models of pancreatic cancer. The utility of these models for pre-clinical testing is dependent upon quantitative, noninvasive methods for monitoring <it>in vivo </it>tumor progression in real time. Toward this goal, we performed whole-body fluorescence imaging and ultrasound imaging to evaluate and to compare these noninvasive imaging modalities for assessing tumor burden and tumor progression in an orthotopic mouse model of pancreatic cancer.</p> <p>Methods</p> <p>The human pancreatic cancer cell line XPA-1, engineered for stable, high-level expression of red fluorescent protein (RFP), was implanted into the pancreas of nude mice using orthotopic implantation. The tumors were allowed to grow over a period of one to several weeks during which time the mice were imaged using both fluorescence imaging and ultrasound imaging to measure tumor burden and to monitor tumor growth.</p> <p>Results</p> <p>Whole-body fluorescence imaging and ultrasound imaging both allowed for the visualization and measurement of orthotopic pancreatic tumor implants <it>in vivo</it>. The imaging sessions were well-tolerated by the mice and yielded data which correlated well in the quantitative assessment of tumor burden. Whole-body fluorescence and two-dimensional ultrasound imaging showed a strong correlation for measurement of tumor size over a range of tumor sizes (R<sup>2 </sup>= 0.6627, P = 0.003 for an exposure time of 67 msec and R<sup>2 </sup>= 0.6553, P = 0.003 for an exposure time of 120 msec).</p> <p>Conclusion</p> <p>Our findings suggest a complementary role for fluorescence imaging and ultrasound imaging in assessing tumor burden and tumor progression in orthotopic mouse models of human cancer.</p

    Yb-Yb correlations and crystal-field effects in the Kondo insulator YbB12 and its solid solutions

    Full text link
    We have studied the effect of Lu substitution on the spin dynamics of the Kondo insulator YbB12 to clarify the origin of the spin-gap response previously observed at low temperature in this material. Inelastic neutron spectra have been measured in Yb1-xLuxB12 compounds for four Lu concentrations x = 0, 0.25, 0.90 and 1.0. The data indicate that the disruption of coherence on the Yb sublattice primarily affects the narrow peak structure occurring near 15-20 meV in pure YbB12, whereas the spin gap and the broad magnetic signal around 38 meV remain almost unaffected. It is inferred that the latter features reflect mainly local, single-site processes, and may be reminiscent of the inelastic magnetic response reported for mixed-valence intermetallic compounds. On the other hand, the lower component at 15 meV is most likely due to dynamic short-range magnetic correlations. The crystal-field splitting in YbB12 estimated from the Er3+ transitions measured in a Yb0.9Er0.1B12 sample, has the same order of magnitude as other relevant energy scales of the system and is thus likely to play a role in the form of the magnetic spectral response.Comment: 16 pages in pdf format, 9 figures. v. 2: coauthor list updated; extra details given in section 3.2 (pp. 6-7); one reference added; fig. 5 axis label change

    Early lung ultrasonography predicts the occurrence of acute respiratory distress syndrome in blunt trauma patients

    Get PDF
    PURPOSE: Extent of lung contusion on initial computed tomography (CT) scan predicts the occurrence of acute respiratory distress syndrome (ARDS) in blunt chest trauma patients. We hypothesized that lung ultrasonography (LUS) on admission could also predict subsequent ARDS. METHODS: Forty-five blunt trauma patients were prospectively studied. Clinical examination, chest radiography, and LUS were performed on arrival at the emergency room. Lung contusion extent was quantified using a LUS score and compared to CT scan measurements. The ability of the LUS score to predict ARDS was tested using the area under the receiver operating characteristic curve (AUC-ROC). The diagnostic accuracy of LUS was compared to that of combined clinical examination and chest radiography for pneumothorax, lung contusion, and hemothorax, with thoracic CT scan as reference. RESULTS: Lung contusion extent assessed by LUS on admission was predictive of the occurrence of ARDS within 72 h (AUC-ROC = 0.78 [95 % CI 0.64-0.92]). The extent of lung contusion on LUS correlated well with CT scan measurements (Spearman\u27s coefficient = 0.82). A LUS score of 6 out of 16 was the best threshold to predict ARDS, with a 58 % [95 % CI 36-77] sensitivity and a 96 % [95 % CI 76-100] specificity. The diagnostic accuracy of LUS was higher than that of combined clinical examination and chest radiography: (AUC-ROC) 0.81 [95 % CI 0.50-1.00] vs. 0.74 [0.48-1.00] (p = 0.24) for pneumothorax, 0.88 [0.76-1.00] vs. 0.69 [0.47-0.92] (p &lt; 0.05) for lung contusion, and 0.84 [0.59-1.00] vs. 0.73 [0.51-0.94] (p &lt; 0.05) for hemothorax. CONCLUSIONS: LUS on admission identifies patients at risk of developing ARDS after blunt trauma. In addition, LUS allows rapid and accurate diagnosis of common traumatic thoracic injuries

    Indirect and direct energy gaps in the Kondo semiconductor YbB12

    Full text link
    Optical conductivity [σ(ω)\sigma(\omega)] of the Kondo semiconductor YbB12_{12} has been measured over wide ranges of temperature (TT=8-690 K) and photon energy (ω\hbar \omega \geq 1.3 meV). The σ(ω)\sigma(\omega) data reveal the entire crossover of YbB12_{12} from a metallic electronic structure at high TT into a semiconducting one at low TT. Associated with the gap development in σ(ω)\sigma(\omega), a clear onset is newly found at ω\hbar\omega=15 meV for TT \leq 20 K. The onset energy is identified as the gap width of YbB12_{12} appearing in σ(ω)\sigma(\omega). This gap in \sigma(\omega)isinterpretedastheindirectgap,whichhasbeenpredictedinthebandmodelofKondosemiconductor.Ontheotherhand,thestrongmidinfrared(mIR)peakobservedin is interpreted as the indirect gap, which has been predicted in the band model of Kondo semiconductor. On the other hand, the strong mid-infrared (mIR) peak observed in \sigma(\omega)$ is interpreted as arising from the direct gap. The absorption coefficient around the onset and the mIR peak indeed show characteristic energy dependences expected for indirect and direct optical transitions in conventional semiconductors.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp

    Lac Blanc Pass: a natural wind-tunnel for studying drifting snow at 2700ma.s.l

    No full text
    International audienceThe investigation of the spatial variability of snow depth in high alpine areas is an important topic in snow hydrology, glacier and avalanche research and the transport of snow by wind is an important process for the distribution of snow in mountainous regions. That's why, for 25 years IRSTEA (previously Cemagref) and Météo France (Centre for the Study of Snow) have joined together in studying drifting snow at Col du Lac Blanc 2700 m a.s.l. near the Alpe d'Huez ski resort in the French Alps. Initially, the site was mainly equipped with conventional meteorological stations and a network of snow poles, in order to test numerical models of drifting snow Sytron (CEN) and NEMO (Cemagref). These models are complementary in terms of spatial and temporal scales: outputs of Sytron model will form the inputs of NEMO model. Then new sensors and technologies appeared which allow to develop new knowledge dealing with thresholds velocity according to morphological features of snow grains, snow flux profiles including parameters such as fall velocity and Schmidt number, histograms of particle widths, aerodynamic roughness, gust factors. More recently, the coupled snowpack/ atmosphere model Meso-NH/Crocus has been evaluated at the experimental site. At the same time, some tested sensors have been deployed in Adelie Land in Antarctica, where blowing snow accounts for a major component of the surface mass balance. Japanese and Austrian research teams have been accomodated at Lac Blanc Pass and new foreign teams are welcome. Initial observations continue. That's why Lac Blanc Pass is also a climatological reference for 25 years at 2700 m. Data are available

    Molecular markers for discriminating Streptococcus pyogenes and S. dysgalactiae subspecies equisimilis

    Get PDF
    Given the increasing aetiological importance of Streptococcus dysgalactiae subspecies equisimilis in diseases which are primarily attributed to S. pyogenes, molecular markers are essential to distinguish these species and delineate their epidemiology more precisely. Many clinical microbiology laboratories rely on agglutination reactivity and biochemical tests to distinguish them. These methods have limitations which are particularly exacerbated when isolates with mixed properties are encountered. In order to provide additional distinguishing parameters that could be used to unequivocally discriminate these two common pathogens, we assess here three molecular targets: the speB gene, intergenic region upstream of the scpG gene (IRSG) and virPCR. Of these, the former two respectively gave positive and negative results for S. pyogenes, and negative and positive results for S. dysgalactiae subsp. equisimilis. Thus, a concerted use of these nucleic acid-based methods is particularly helpful in epidemiological surveillance to accurately assess the relative contribution of these species to streptococcal infections and diseases

    Formation Mechanism of Hybridization Gap in Kondo Insulators based on a Realistic Band Model and Application to YbB12_{12}

    Get PDF
    A new LDA+U band calculation is performed on the Kondo insulator material YbB12_{12} and an energy gap of about 0.001Ryd is obtained. Based on this, a simple tight-binding model with 5dϵ\epsilon and 4f Γ8\Gamma_8 orbitals on Yb atoms and the nearest neighbor σ\sigma-bonds between them is constructed with a good agreement to the above the LDA+U calculation near the gap. The density of states is also calculated and the shape is found to be very asymmetric with respect to the gap. A formation mechanism of the gap is clarified for the first time in a realistic situation with the orbital degeneracies in both conduction bands and the f states. This model can be a useful starting point for incorporating the strong correlation effect, and for understanding all the thermal, thermoelectric, transport and magnetic properties of YbB12_{12}.Comment: 15 pages, 15 figures, to appear in J. Phys. Soc. Jpn. Vol. 72 No. 5 (2003
    corecore