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A new LDA+U band calculation is performed on the Kondo insulator material YbB12 and
an energy gap of about 0.001Ryd is obtained. Based on this, a simple tight-binding model
with 5dε and 4f Γ8 orbitals on Yb atoms and the nearest neighbor σ-bonds between them is
constructed with a good agreement to the above the LDA+U calculation near the gap. The
density of states is also calculated and the shape is found to be very asymmetric with respect to
the gap. A formation mechanism of the gap is clarified for the first time in a realistic situation
with the orbital degeneracies in both conduction bands and the f states. This model can be a
useful starting point for incorporating the strong correlation effect, and for understanding all
the thermal, thermoelectric, transport and magnetic properties of YbB12.
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§1. Introduction

Among the rare-earth compounds which include
the strongly correlated f electrons, SmB6,1) YbB12,2)

Ce3Bi4Pt3,3) CeRhSb,4) CeFe4P12,5) CeNiSn,6) TmSe7)

etc. exhibit insulating behavior at low temperatures
whereas the Kondo-like behaviors (the enhanced elec-
tric specific heat and the enhanced paramagnetic sus-
ceptibility, etc.) are often observed at higher tempera-
tures. These materials are called Kondo insulators, Kon-
do semiconductors or heavy fermion semiconductors.8)

Recent studies on CeNiSn uncovered that this material
is a semimetal with a pseudogap.9) TmSe orders anti-
ferromagnetically below TN=5K, so that the insulating
behavior seems to be due to the gap caused by this order.
Sm has a complicated f shell with five to six f electron-
s (although the ground state of f6 has vanishing total
angular momentum, so that the treatment of Sm ions
might not be so difficult than expected10)). We exclude
these three materials from the following discussions.

The Kondo effect usually occurs in metals, so that the
existence of an energy gap at the Fermi energy in insu-
lators may seem contradictory to the occurence of the
Kondo effect in these materials. However, it is already
clarified that the Kondo effect can occur if the Kondo
temperature TK exceeds the gap size Eg.11) Even in the
compounds with the periodic array of rare-earth ions, the
effect of the strong correlation is mainly to renormalize
the gap size if the band calculation does yield an energy
gap.12) Thus, we can understand that the Kondo insula-
tor is a band insulator with a strong correlation.13,14) In
fact, all the known Kondo insulators have even number
of electrons which fill the bands below the gap. (TmSe
has odd number of electrons, so that it may not be classi-
fied into the Kondo insulators also in the present sense.)

In this context, the concept of the Kondo insulator may
be extended beyond the rare-earth compounds. FeSi15)

is considered to be such an example among the transi-
tion metal compounds with 3d electrons16) although the
correlation may not be so strong as in rare-earth com-
pounds.

Recently, some of the Kondo insulator compounds are
attracting renewed interests because of a possibility to
be a potential candidate for an efficient thermoelectric
device.17) However, quantitative analysis on these mate-
rials have been hindered because of the lack of a sim-
ple description of the basic electronic structures. LDA
band calculations on the Kondo insulators including the
f-electrons as itinerant ones are carried out, giving rising
to an energy gap around the Fermi energy,18) or at least
a tendency towards the opening of the gap.19) Neverthe-
less, the obtained band structures look rather complicat-
ed, so that a simpler tight-binding model description is
necessary to explore the effect of the strong correlation
starting from the band structure calculations.

The simplest theoretical model to describe the Kondo
insulators is the periodic Anderson model (PAM). Up to
now, mostly the case with only the spin degeneracy has
been investigated.12,20,21) In this case, the conduction
band dispersion εk and the f level depicted in Fig.1(a)
mix up to yield the bands shown in Fig.1(b) after the
hybridization, and the energy gap opens. However, it
has already been criticized that this too simple scenario
does not work in realistic systems with orbital degener-
acy. It was pointed out by Anderson22) that only one
orbital among f states can mix with the plane wave s-
tate, and other f states remain unmixed. This situation
was treated later in more detail.23,24) Next, consider the
case shown in Fig.2(a) where the conduction band has
the two-fold orbital degeneracy. (The spin degeneracy
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is not explicitly shown here and henceforth.) It is clear
from Fig.2(b) that the bands after the hybridization can
not have a gap.25)

Sometimes, a PAM with orbital degeneracy in both
conduction bands and f states is considered.26,27) In this
case, however, an artificial assumption that the local
symmetry of the f state is conserved even when an elec-
tron propagates from site to site, is made in order to
facilitate the calculation.

Theoretical studies have been performed also on the
model in which the conduction band is treated by the
free-electron model but the anisotropic hybridization ma-
trix elements with the f-electron states under the crys-
talline electric field (CEF) are taken into account.28–30)

Applicability of this type of model may, however, be lim-
ited to the materials which have such a free-electron-like
conduction band. Thus, we need a more sophisticated
model and an explanation of the formation of a gap in
real materials based on reliable band calculations.
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Fig. 1. The simplest picture for the formation of the hybridiza-

tion gap. The dispersion curves (a) without mixing and (b) after
the mixing is introduced.

��� ���

�

��

�

��

Fig. 2. The case that the hybridization gap does not open be-
cause of the degeneracy in the conduction band. The dispersion

curves (a) without mixing and (b) after the mixing is introduced.

YbB12 is the best material to study the formation
mechanism of the gap because it is one of the most
intensively investigated materials. Thermal,31) trans-
port,32) optical,33) PES,34) neutron scattering35) exper-
iments have been performed. In addition, the crystal
structure is the simple NaCl type, where Yb ions and
B12 clusters are located at the interpenetrating fcc sites.
Previous LDA band calculation,19) however, resulted in
a semimetal with small overlap of the conduction and va-
lence bands. Role of the spin-orbit interaction was found
to be important by the comparison with the calculation
for LuB12 without it.36) We will report a new calculation
using the LDA+U method37) in the next section and find
that a gap does open. To clarify the mechanism of the
opening of the gap when the orbital degeneracy exists,
we will construct a simple tight-binding model for the

conduction band and introduce a hybridization with the
4f Γ8 state in §3 and the formation of the hybridization
gap is discussed. §4 is devoted to classifying and clari-
fying the formation mechanism of the gap. Conclusions
will be given in §5.

§2. LDA+U Calculation for YbB12

We have performed a new FLAPW band calcula-
tion for YbB12 using the LDA+U method37) by adding
the term H′ =

∑
imm′σσ′ |imσ〉V σσ′

mm′ 〈im′σ′| to the L-
DA Hamiltonian, where V σσ′

mm′ = U(1
2 − nσσ′

mm′ ), U is a
parameter and is chosen to be 0.5 Ryd, and nσσ′

mm′ =∑
nk〈imσ|nk〉〈nk|im′σ′〉 is the density matrix between

the orbitals m, m′ and the spins σ, σ′. Here, |nk〉 is the
Bloch function, and we consider only � = 3 for the lo-
calized orbital |imσ〉 at site i. Note that the original
LDA+U method is extended to the case with the spin-
orbit interaction by introducing the off-diagonal matrix
elements with respect to the spin indices in nσσ′

mm′ ,38)

which is calculated self-consistently.
Introduction of the potential V σσ′

mm′ pulls down the oc-
cupied 4f levels compared to the LDA positions. In the
case of YbB12, the resultant 4f level lies below the 5d con-
duction band. We think that it is an artifact of the LDA
scheme, in which the exchange energy may be overcount-
ed for the 4f electons of heavy Yb atom compared to the
2p electrons of the light B atom, because the 4f electron-
s are located around the core-electrons which contribute
the LDA potential. This phenomenon can not be correct-
ed even by introducting the LDA+U method. Therefore,
we have pulled up the 4f levels additionally by 0.3 Ryd.
Whole the calculation was made self-consistent including
this additional shift, and then we obtained the 4f levels
located in the conduction band, which has t2g character
and consists mainly of 5dε states on Yb. We consider
that these positions of the 4f levels are reasonable since
otherwise we can not obtain the gap. The 4f levels are
split into Γ6, Γ7 and Γ8 under the cubic symmetry with
the energies EΓ6 < EΓ7 < EΓ8.

We found that a small gap of about 0.0013 Ryd opens
due to the mixing of the 4f Γ8 state and the conduc-
tion band of the t2g character as shown in Figs.3 and
4. Number of f electrons is about 13.3. Note that Γ7

and Γ6 states are lower in energy than Γ8, whereas the
recent neutron scattering experiment39) found the op-
posite crystalline field level scheme EΓ6 > EΓ7 > EΓ8 .
This contradiction can be simply understood by taking
the hole picture. In this view point, the ground state
of 4f13 corresponds to the one hole state in Γ8, and the
excitation to Γ7 or Γ6 states needs to annihilate this hole
and create a hole in Γ7 or Γ6 states, which needs posi-
tive energy in total. The density of states is displayed in
Fig.5. Note that the shape is very asymmetric with re-
spect to the gap. Whole of the electronic band structure
seems very complicated, but if one looks at the dispersion
curves near the gap, one finds that it is not so much com-
plicated. We will express them by a simple tight-binding
model in the next section.
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Fig. 3. LDA+U band calculationfor YbB12. The three flat band-

s correspond to the 4f Γ8, Γ7 and Γ6 states, respectively.

Fig. 4. Expanded figure of the dispersion curves near the energy
gap.

§3. Tight-binding Model for YbB12

We express the LDA+U bands near the gap by the
simple tight-binding model40) with only the (ddσ) over-
lapping integral between 5dε (xy, yz and zx) and 5dγ
(x2 − y2 and 3z2 − r2) orbitals on Yb ions. This (ddσ)
should be regarded as being produced by the effective
hopping through the B12 clusters. Configuration of the
orbitals in (001) plane of the crystal is displayed in Fig.6.
We locate the energy levels of 5dε and 5dγ orbitals at
Edε=1.0 Ryd and Edγ =1.4 Ryd, respectively, and set
(ddσ)= 0.06 Ryd. Usually, (ddσ) is negative, but it is set
positive here since the hopping through B12 clusters may
change the sign, and only this choice can reproduce the
LDA+U band calculation. The resulting bands, shown in
Fig. 7 along the symmetry axes Γ(000)-K( 3
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Fig. 5. The density of states of YbB12 calculated by the LDA+U

method. The insert shows the expanded view of the bands near
the gap.

W(1 1
20)-L( 1

2
1
2

1
2 )-Γ(000)-X(100), consist of the lower 5dε

and the higher 5dγ bands, and look very similar to the
dispersions of the conduction bands of t2g and εg char-
acters near EF in the LDA and LDA+U calculations, if
the f states are removed.

Fig. 6. Configuration of the dε orbitals (large) on Yb sites and p

orbitals (small) on B sites in (001) plane. The shadows indicate
the negative-value parts of the wavefunctions.

Furthermore, if we take only the dε orbitals, the
Hamiltonian matrix becomes diagonal and the energy
dispersions are given by the following simple expression-
s:

Eαβ
k = Edε + 3(ddσ) cos(

kα

2
) cos(

kβ

2
), (1)

where (α, β) = (x, y), (y, z) and (z, x). The splitting at
L point in Fig.7 disappeared in this simplified model. It
is easy to see that the lowest band along Γ-K-X(110) in
Fig.7 is doubly degenerate and given by Eyz

k and Ezx
k

with kz = 0, whereas the next band has no degeneracy
and is given by Exy

k with kx = ky and kz = 0. The lowest
bands along Γ-X(100) are also doubly degenerated.
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Fig. 7. Energy dispersion of the tight-binding model for the
YbB12 conduction band. The primary orbital xy, yz or zx in

each band is designated for the lower dε bands.

It is expected that the inclusion of the f states at 0.88
Ryd and the mixing with the conduction bands in Fig.7
will yield the bands with the energy gap as obtained by
the LDA+U calculation. However, the lowest branch
in Fig.7 along Γ-X line is doubly degenerate, so that a
simple mixing band picture cannot yield an energy gap,
as was mentioned in §1. One has to take account of the
symmetry and degeneracy of the 4f states with spin-orbit
interaction (Γ8) properly as well as those of the con-
duction bands (t2g). The band calculation does include
these features and yield the energy gap. Therefore, our
tight-binding band will also yield an energy gap if these
features are taken into account.

The mixing matrix elements (Slater-Koster integrals)
between d and f states have been given only for the d
and f states under cubic CEF and without spin-orbit in-
teraction.41) We need an expression including spin-orbit
interaction. The Γ8 states under cubic CEF in the sub-
space of the total angular momentum J = 7/2 (for Yb)
are expressed in terms of the spherical harmonics Y m

� ’s
with � = 3 and the spinors χ±’s as,

Y m
3 ’s can be related to the normalized cubic harmonics

by

Using these relations, one obtains

The mixing matrix elements between the above cubic
harmonics and d orbitals under cubic CEF are given in
ref.41. After lengthy calculations, the matrix elements
between d and f states at k are finally given by

where cα = cos(ka/2), sα = sin(kα/2) (α = x, y, z) and
t = (dfσ). Note that we have retained only the near-
est neighbor (dfσ) bonds as the simplest model. Diag-
onalizing the Hamiltonian matrix for EΓ8 = 0.88 Ryd,
(ddσ)=0.06 Ryd and (dfσ)=0.01 Ryd, we found that a

gap almost opens but a small overlap of the bands re-
mains between W and L points. It was not improved by
the introduction of (dfπ), (ffσ) nor the second nearest
bonds. Therefore, we have shifted down the bands be-
low the gap by ∆E = −0.005 Ryd relative to the bands
above the gap, similar to the LDA+U treatment, and ob-
tain the dispersion curves shown in Fig.8 which have an
indirect gap of about 0.003 Ryd between X and L points.
The integrals (dfπ) = −0.005 Ryd and (ffσ) = −0.002
Ryd are also included here to improve the agreement
with the band calculation. Note that (ffσ) lifts the or-
bital degeneracy of Γ8 states except the symmetry points.
The value of the gap is larger than that in experiment,
but we used it for demonstrating the gap clearly. We al-
so expect that it will be renormalized down to a smaller
value by the correlation effect, although the gap size is
of course adjustable here. The density of states is shown
in Fig.9, which is very asymmetric with respect to the
gap, similar to that obtained by the LDA+U method.
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Fig. 8. Energy dispersion of the tight-binding model for the
YbB12 including the hybridization with 4f Γ8 states.
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Fig. 9. Density of states of the tight-binding model for the YbB12

band.

§4. Formation Mechanism of Hybridization Gap

In order to understand the mechanism of the open-
ing of the gap, we first consider a simple example with
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|Γ(1)
8 ±〉 =

(√
7
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Y ±3
3 −

√
5
28

Y ∓1
3

)
χ± −

√
5
21

Y 0
3 χ∓, (2a)

|Γ(2)
8 ±〉 =

(√
3
14

Y ±2
3 +

√
3
14

Y ∓2
3

)
χ± +

(√
1
28

Y ±3
3 +

√
15
28

Y ∓1
3

)
χ∓. (2b)

Y 0
3 = |z(5z2 − 3r2)〉, (3a)

Y ±1
3 = −

√
3
16
[∓|x(5x2 − 3r2)〉 − i|y(5y2 − 3r2)〉]−

√
5
16
[±|x(y2 − z2)〉 − i|y(z2 − x2)〉] , (3b)

Y ±2
3 =

1√
2

[|z(x2 − y2)〉 ± i|xyz〉] , (3c)

Y ±3
3 = −

√
5
16
[±|x(5x2 − 3r2)〉 − i|y(5y2 − 3r2)〉]−

√
3
16
[∓|x(y2 − z2)〉 − i|y(z2 − x2)〉] (3d)

degeneracy in both extended and localized orbitals. Γ8

states have four-fold degeneracy, which consists of two-
fold orbital degeneracy times two-fold Kramers one. The
Kramers degeneracy always remains even after the hy-
bridization or the inclusion of the spin-orbit interaction.
Therefore, we take xy, yz and zx orbitals as the ex-
tended states and regard x2 − y2 and 3z2 − r2 as the
localized ones to imitate the two-fold orbital degeneracy
of Γ8 states, and construct the tight-binding model with
nearest-neighbor (ddσ) bonds only between dε-dε and
dε-dγ. The Hamiltonian matrix reads as

Eαβ
k are given by eq.(1). Usually, tεγ must be equal

to (ddσ) but here we assume tεγ �= (ddσ). In this
model, the mixing matrix elements are proportional to
sin(ky/2) sin(kz/2) and sin(kz/2) sin(kx/2) for the low-
est yz and zx bands, respectively, so that the gap van-
ishes along the symmetry axes Γ-K-X(110)-W(1 1

2
0) and

Γ-X(100) where kz = 0, as shown in Fig.11. The density
of states is shown in Fig.12 and becomes singular at the
flat band. Note that a gap does open, of course, if we
replace sin(kα/2) by a constant value in eq.(6), but it
does not open if we replace all the off-diagonal matrix
elements between dγ’s and dε’s by the same value of a
constant. This is because of an accidental degeneracy,
and can be more easily seen by considering the simpler
Hamiltonian matrix


εk 0 V V
0 εk V V
V V Ef 0
V V 0 Ef


 , (7)

which has the eigenvalues εk, Ef and [εk + Ef ±√
(εk − Ef)2 + 16V 2]/2. The dispersion curves look like

Fig.10.

�

��

Fig. 10. The dispersion curves corresponding to the Hamiltonian
matrix eq.(7) is shown.

Note also that if the Hamiltonian matrix is given by


εk 0 V 0
0 εk 0 V
V 0 Ef 0
0 V 0 Ef


 , (8)

the eigenvalues are the hybridized bands [εk + Ef ±√
(εk − Ef)2 + 16V 2]/2, each of which is doubly degen-

erated and has a gap. This or similar models have been
often used in the literature,26,27) but are not appropriate
since the local symmetry of the f state is conserved even
through the hopping from one site to the other.

Based on these analyses, we consider eq.(5) again. The
structure of this matrix looks rather similar to that of
eq.(6), although the inclusion of the spin-orbit interac-
tion makes it complex. If we set all sα = cα = 1 in eq.(5),
then we obtain a gap of about 0.003 Ryd without an L-
DA+U shift ∆E (Fig.13). On the other hand, gap does
not open because of accidental degeneracy if we give the
same value of a constant to all the off-diagonal matrix
elements.

We can summarize the formation mechanism of an en-
ergy gap in the Kondo insulators as follows. As shown in
Fig.14, if there is a two-fold orbital degeneracy (besides
the Kramers one) in the f states and no degeneracy in
the crossing conduction band, a gap can open, but there
is a possibility that the bands might overlap due to some
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5
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5
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2

√
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]
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√
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√
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Fig. 11. The tight-binding band with dε-dε and dε-dγ integrals

only. The parameters are chosen as tεγ = 0.5(ddσ).

dispersion of the localized states. When both the con-
duction band and the f state have two-fold degeneracy, a
gap can also open as shown in Fig.15 except the case of
accidental degeneracy or the strong dispersion in f state.
Furtheremore, complex off-diagonal matrix elements due
to the spin-orbit interaction makes it difficult for the gap
to close.

On the other hand, gap does not open if the f state
has no orbital degeneracy as in Γ6 or Γ7 states and the
conduction band has degeneracy (Fig.2). Therefore, the
experimental fact that there is a gap in YbB12 indicates
that the ground state is Γ8. (Note if Γ7, say, is above the
gap, and Γ8 is at the gap, the gap opens, but the number
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200

ε

D
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S

Fig. 12. The density of states of the tight-binding band shown in

Fig.11.

of f electrons in the ground state becomes twelve, which
can not be accepted based on the experimental facts.)

§5. Conclusions

We have performed a new LDA+U band calculation
for the most typical Kondo insulator YbB12 and obtained
a gap of about 0.0013 Ryd. Based on this calculation,
we constructed a simple tight-binding band model to ex-
press the bands near the energy gap. The conduction
band consists of the 5dε orbitals on Yb and the effective
overlap integral (ddσ) is regarded as being produced by
the hopping through the B12 clusters. This model can
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xy yz zx x2 − y2 3z2 − r2
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√
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Fig. 13. Energy dispersion of the tight-binding model for the
YbB12 in which all sα ’s and cα’s are replaced with unity. This

calculation does not include (dfπ) nor (ffσ).

��� ���

�

��

�

��

Fig. 14. The case that the hybridization gap does open. The
dispersion curves (a) without mixing and (b) after the mixing is

introduced.
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Fig. 15. The case that the hybridization gap does open. The
dispersion curves (a) without mixing and (b) after the mixing is

introduced.

describe the t2g conduction band very well. Inclusion of
the mixing with the 4f Γ8 states resulted in the ener-
gy gap after additional shift of the filled bands similar
to the LDA+U treatment. The formation mechanism of
the gap in the realistic situation with the degeneracy of
the conduction bands and the f states is classified and
clarified for the first time.

The present model is very useful in constructing a the-

ory with correlation effect, and may consistently explain
all the thermal, thermoelectric, transport and magnet-
ic properties of YbB12. Such a calculation is now in
progress. Preliminary calculation for the thermoelectric
power is already reported,42) in which the asymmetry
of the density of states with respect to the gap plays
an important role in the temperature dependence of the
thermopower. Finally, it should be emphasized that the
f-f hopping is also important, although small, to repro-
duce the band calculation, so that a use of a too sim-
plified model with the plane wave conduction electrons
and the completely localized f-electrons may need take
care. Especially, anomalies in the density of states28–30)

obtained for such a simplified model may be sensitive to
the inclusion of the f-f hopping.
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