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Effect of unsteady wind on drifting snow: first investigations
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Abstract. Wind is not always a steady flow. It can oscillate,
producing blasts. However, most of the current numerical
models of drifting snow are constrained by one major as-
sumption: forcing winds are steady and uniform. Moreover,
very few studies have been done to verify this hypothesis,
because of the lack of available instrumentation and mea-
surement difficulties. Therefore, too little is known about
the possible role of wind gust in drifting snow. In order to
better understand the effect of unsteady winds, we have per-
formed both experiments at the climatic wind tunnel at the
CSTB (Centre Scientifique et Technique des Bâtiments) in
Nantes, France, and in situ experiments on our experimental
high-altitude site, at the Lac Blanc Pass. These experiments
were carried out collaboratively with Cemagref (France),
Mét́eo-France, and the IFENA (Switzerland). Through the
wind tunnel experiments, we found that drifting snow is in
a state of permanent disequilibrium in the presence of fluc-
tuating airflows. In addition, the in situ experiments show
that the largest drifting snow episodes appear during periods
of roughly constant strong wind, whereas a short but strong
blast does not produce significant drifting snow.

Key words. Drifting snow, blowing snow, gust, blast, acous-
tic sensor

1 Introduction and objectives of the studies

Contrary to most of current numerical models of drifting
snow, wind is not always a steady flow, sometimes oscillating
and producing blasts. These models of drifting snow depend
on the important assumption that forcing winds are steady
and uniform. There has been little research to verify this hy-
pothesis given the difficulties in measurement and the lack of
available instrumentation and as a result, too little is known
about the possible role of wind gust in drifting snow. This
leads to the question of whether it is possible to take into ac-
count only the average velocity of the wind in drifting snow
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modelling. To validate our numerical model of drifting snow,
we need to answer this question in both temporal and spatial
regimes.

To this purpose, we have performed two experiments at
the climatic wind tunnel of the CSTB (Centre Scientifique et
Technique des B̂atiments) in Nantes, France, and in situ ex-
periments on our high-altitude experimental site at the Lac
Blanc Pass. These experiments were done in a collabora-
tive effort between Cemagref (France), Mét́eo-France, and
IFENA (Switzerland).

2 Previous studies

A review of the literature shows that, as Meunier points out
(Meunier, 1999), there are very few experimental data con-
cerning the effect of an unsteady wind on drifting flux. The
exceptions are his PhD thesis and Butterfield’s paper (Butter-
field, 1991). Meunier (1999) describes this nonsteady flow as
a function of three variables: mean velocity, amplitude and
frequency of oscillations. Moreover, their results are partly
contradictory. Indeed, Butterfield (1993) found that in un-
steady airflow, the drifting saltating sand mass flux correlated
well with wind speed, for low variations in wind speed. For
sand, he found that the flux followed the increase in wind
speed instantaneously, whereas during the decrease, the flux
was roughly 1 to 2 s late relative to the wind speed. Meunier
(1999), who works with PVC, polystyrene or glass spheres,
distinguishes two types of wind blasts. The first type cor-
responds to wind gusts of weak amplitude (mean velocity:
7.8 m/s, amplitude: 0.6 m/s) and weak frequency (0.2 Hz),
for which the flux was late relative to the increase in wind
speed and was well correlated with wind speed during the
decrease. Moreover, for such a wind blast, the flux mea-
sured with non-steady wind was weaker than the correspond-
ing flux with constant wind. The second type of wind blast
corresponds to oscillations with a weak frequency, but with
a high amplitude. In this case, the flux measured with non-
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Fig.1 

Fig. 1. Pole no. 1 (Wind gauge, acoustic drifting snow sensor and
drifting snow mechanical traps).
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Fig. 2. Relation between output voltage of acoustic sensor (with-
out offset) and blowing snow flux obtained in the CSTB cold wind
tunnel (thanks to mechanical traps).

steady wind was stronger than the corresponding flux with
constant wind.

3 Gust effects in cold wind tunnel

3.1 The CSTB cold wind tunnel and measurement tech-
niques

The experiments reported here were performed at the cli-
matic wind tunnel at the CSTB (Centre Scientifique et Tech-
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Fig. 3. Temporal development of mass flux for a wind speed near
the threshold (experiment no. 1).
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Fig. 4. Temporal development of mass flux for a higher wind speed
(experiment no. 2).

nique des B̂atiments) in Nantes, France. The measurement
section of the wind tunnel is 27 m long, 10 m wide and 8 m
high and snow is artificially produced by three snow guns.

The first part of the experiments, devoted to the study of
drifting snow inside the experimental chamber, was the ob-
ject of a previous paper (Naaim-Bouvet, 2002). Certain prac-
tical problems were encountered, as outlined below:

– The artificial snow is not dendritic, but consists of
small ice pellets with grain diameters between 0.1 and
0.5 mm. Despite the low temperatures used (between
−10 and−20◦ C), the snow sinters very quickly on the
ground due to the high humidity. Thus we observed a
variation of threshold velocity as a function of time.

– The trajectory of droplets coming out of the snow can-
nons is a function of the diameter, varying from 0.1 mm
to 0.5 mm, so that the distribution of particle size was
not uniform along the experimental chamber: the diam-
eter, and consequently the threshold velocity, decreased
with distance from the snow guns.

– The cold wind tunnel is a return flow, closed-circuit type
and the lack of filter led to the permanent presence of
small particle clouds during all the trials: we observed
a second maximum of snow particle concentration at a
certain height above the ground in addition to the max-
imum particle concentration in the saltation layer close
to the ground.
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Fig. 5. Experiment no. 3: Output voltage as a function of wind speed for a progressive acceleration flow followed by a rapid deceleration
flow.

The second part of the experiment was conducted to study
the effect of unsteady wind on drifting snow events. After op-
erating the three snow guns with a low wind speed (between
2 and 3 m/s) at−15◦ C for approximately 20 min in order to
obtain a substantial and uniform snow depth, we started the
wind tunnel.

The wind tunnel experiments reported here were con-
ducted using unsteady free stream velocity regimes over a
snow bed. There were two simulation variants:

– a more or less rapid increase or decrease in free-stream
velocity,

– free-stream velocity increases and decreases in a pat-
tern simulating a simplified gust sequence (sinusoidal
shape). Synchronous measurements of mass flux and
velocity were made at the end of the experimental cham-
ber (17 m leeward of the snow guns) and were recorded
every second at the measurement station. Mass flux was
determined with an acoustic snowdrift sensor, a minia-
ture microphone located at the base of a 2-m-long alu-
minium pole. During the snowdrift event, the pole was
exposed to the snow-particle flux and part of the flux im-
pacts on the pole. The sound produced by these impacts
is recorded as an electrical signal on the data logger. Be-
forehand, this acoustic wind drift sensor was evaluated
against different mechanical snow traps and one optical
snow particle counter (Michaux, 2000; Lehning, 2002)
(see Fig. 1). From this sensor, it was unfortunately not
possible to distinguish saltation from turbulent diffu-
sion. The wind speed was recorded at a height of 3 m,
i.e., outside of the boundary layer. In fact, saltation
and turbulent diffusion in the air introduced a two-phase
flow that substantially modified the boundary layer. But
due to the constraints imposed by available instrumen-
tation, the flow inside the boundary layer was not inves-
tigated.

3.2 Drifting snow responses to flow accelerations and de-
celerations

First, we increased or decreased free-stream velocity, simu-
lating conditions arising when an erosive gust initiates snow
transport from a still air condition, as done by Butterfield
(1993) for sand.

He observed two stages from his physical wind tunnel ex-
periments: mass flux responded initially within 1 s or less to
moderate changes in wind velocity and corresponded to the
time for saltating particles to saturate the flow. Further sys-
tem regulation occurred over periods of 100 s or so as the
boundary layer and bed adjust to the new mass flux. The
primary response time is found to increase with decreasing
shear velocity. Response to wind decelerations occurred in a
more complex two-stage process: mass flux lags 2 or more
seconds behind decelerations. These experimental results
are in agreement with numerical models developed for sand
saltation by McEwan and Willets (1991). Moreover, Butter-
field observed that sudden velocity excursions transgressing
the entrainment threshold condition may induce initial trans-
port spikes several times the magnitude of the mean mass
flux.

In our own experiments (see Figs. 3 and 4), we encoun-
tered some of these characteristics. The primary response
of the system can be roughly determined from the data pre-
sented on Figs. 3 and 4. For a wind speed near the thresh-
old (experiment no. 1), mass flux may lag up to 70 s behind
wind whereas mass flux lags up to 8 s for the higher wind
speed (experiment no. 2). Thus, the trends were the same
(response time increased with decreasing wind), contrary to
the orders of magnitude. This longer time to approach par-
tial equilibrium can be attributed to the splash function of
snow particles. In fact, the primary response of the system
results from grain-bed collision processes that greatly differ
from sand to snow due to the bonds between snow particles,
as pointed out by Naaim-Bouvet (1998). We repeat that the
snow sinters very fast on the ground due to the high humidity.
The time for particles to saturate the flow and the maximum
length necessary to obtain saturation are closely linked (the
saturation length is the length along a transect parallel to the
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Fig. 6. Experiment no. 4: Output voltage as a function of wind speed for a progressive acceleration flow followed by a progressive
deceleration flow.
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Wind speed at 3 meters (pole n°5)
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Fig. 7. Experiment no. 5: Output voltage as a function of wind speed for a rapid acceleration flow followed by a rapid deceleration flow.

wind, between a theoretical point serving as the starting point
of drifting snow, and a plot where the drifting snow begins to
saturate). As a first approximation, we can consider that:

Labl =
Tsat · Ls

Ts

,

whereLabl is the length necessary to obtain saturation,Ls is
saltation length i.e., the length of one jump by a snow partic-
ule in saltation,Hs is saltation height, i.e., the height of one
jump by a snow particle in saltation,Ts is saltation time (s),
u∗ is the friction velocity.

Knowing the time for particles to saturate the flow, it
will be possible to determine the orders of magnitude of the
length necessary to obtain saturation for the two cases pre-
sented in Figs. 3 and 4.

These lengths are in agreement with those from the liter-
ature: for loose granular snow particles, the fetch necessary
to reach saturation seems to be several tens of centimetres,
according to wind tunnel experiments carried out by Kosugi
(1992). Kobayashi (1972) showed that this fetch ranged from
30 to 60 m whereas Takeuchi (1980) estimated that the snow-
drift flux reached saturation about 350 m downwind from the
starting point.

Contrary to Butterfield (1993), the initial transport spike
and the second system regulation were not observed during
our experiments. This could be due to a lack of sensitivity in
the acoustic sensor.

In our case, snow mass flux lagged 1 or more seconds be-
hind decelerations of the free-stream velocity. As explained
by Butterfield, stress adjustment to the profile apparently
propagates more rapidly during flow accelerations than dur-
ing decelerations. Thus the response of drifting snow to sud-
den velocity decreases does not seem to be the exact reverse
of the response to sudden increases. But experiments carried
out in the cold wind tunnel merit closer examination.

The experiments presented in Figs. 5, 6 and 7 simulate
sudden or more gradual free-stream velocity increments and
decrements. Three typical configurations were simulated:

– progressive acceleration followed by rapid deceleration
of flow (Fig. 5),

– progressive acceleration followed by progressive decel-
eration of flow (Fig. 6),

– rapid acceleration followed by rapid deceleration of
flow (Fig. 7).

We note that for the same wind speed, the snow mass flux
was greater during a rapid wind decrease than during the pre-
vious increase (rapid as well as progressive). This hysteresis
in the phenomenon was translated into differences between
threshold erosion velocity and threshold deposit velocity, as
shown in Table 2. For a progressive increase followed by
a progressive decrease, the hysteresis was much less pro-
nounced.
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Table 1. Rough estimation of length necessary to obtain saturation

u∗ Hs =
1.6u2

∗

2g
Ls Ts =

2
g · 1.5u∗ Labl

(m/s) (Pomeroy, 1988) (from Kikuchi’s data, 1981) (Mellor and Radok, 1968)

Experiment no. 1 0.3 7.3 mm 47 mm 9.17 10−2 s 36 m
Experiment no. 2 0.8 52 mm 210 mm 2.45 10−1 s 6 m

Table 2. Threshold erosion and deposition velocity for different experiments

Experiment no. 1 Experiment no. 2 Experiment no. 3

Threshold erosion velocity (wind speed at 3 m) 5.6 m/s 4.7 m/s 3.9 m/s
Threshold deposit velocity (wind speed at 3 m) 3.6 m/s 4.6 m/s 2.9 m/s
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Fig. 8. Comparison between threshold velocities of erosion and
deposit at CSTB.

These differences between threshold erosion and deposit
velocities appeared for most experiments (see Fig. 8). On
this graph, we plotted the threshold velocities for the differ-
ent experiments with or without wind blast, and with oscil-
lated winds. We obtained a decrease in the threshold deposit
velocity when the threshold erosion velocity increased. This
shows that for the same initial type of snow (ice spheres from
snow guns), the threshold erosion and deposit velocities can
be very different, depending on the wind flow (constant wind
or gust), the time between the snow fall and the beginning of
the wind velocity increase, and also on the humidity in the
air (ice bond formation between snow grains).

In summary, in rapidly fluctuating airflows, the mass flux
for blowing snow seems to be unable to follow the veloc-
ity variations exactly, leading to a permanent disequilibrium,
which is consistent with results from Butterfield (1993) for
drifting sand. Nevertheless, this effect seems to be more
pronounced for snow resulting from grain-bed collision pro-
cesses, which lead to a longer time for saltating particles to
saturate the flow. This first hypothesis is confirmed by exper-
iments presented in the next paragraph.

3.3 Drifting snow responses to fluctuating winds

In this case, we studied adjustments of mass flux under fluc-
tuating winds over snow bed. We simulated wind gusts of
relatively high amplitude (mean velocity: 7.85 m/s, ampli-
tude: 2.9 m/s) and weak frequency (1/12 Hz).

Drifting snow responded to flow accelerations and deceler-
ations so that the temporal development of mass flux roughly
reproduced the sinusoidal shape of wind velocity (see Fig. 9).
But we must point out that the amplitude of the signal mea-
sured by acoustic sensors increased progressively until it
reached a steady value. There is evidence that antecedent ve-
locity magnitude, velocity history and drifting snow activity
influenced the mass flux response, as shown by Butterfield
(1993) for sand saltation. Natural drifting snow transport
was in a state of permanent disequilibrium with fluctuating
airflows, as shown on Fig. 10, that is, contrary to gradual air-
flow increments and decrements, mass flux and velocity were
poorly matched for fluctuating airflows.

4 Gust effects in field experiments: Lac Blanc Pass

Natural gust sequences could have a multitude of forms and
may not be characterized by such sudden velocity increments
and decrements.

4.1 The Lac Blanc Pass experimental site

In order to study the drifting snow problem, the Cemagref
Etna Unit and the Snow Study Center of Mét́eo France have
developed a joint experimental site located at Lac Blanc Pass,
with the logistic support of SATA (the Alpe d’Huez ski resort
management company), and with the financial support of the
Rhone-Alpes Region (Michaux et al., 2000).

This site, which is located 2700 m a.s.l. near the Alpe
d’Huez ski resort, is a nearly flat area. It is a kind of nat-
ural cold wind tunnel with prevailing winds from north and
south. On this site, the high wind speeds and the snow cover
are favourable to drifting snow. This area is both an erosion



134 J.-L. Michaux et al.: Effect of unsteady wind on drifting snow

 

 

Fig.9 
 

0
2
4
6
8

10
12

75 125 175 225 275

Time (s)

W
in

d 
sp

ee
d 

(m
.s

-1
)

0

200

400

600

800

O
ut

pu
t v

ol
ta

ge
 (m

V)

Acoustic sensor Wind speed beside 
the  acoustic sensor 

Wind speed at the 
entry of the wind 

Fig. 9. Experiment no. 6: Temporal development of mass flux for fluctuating wind (mean velocity: 7.85 m/s, amplitude: 2.9 m/s and weak
frequency: 1/12 Hz).
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Fig. 10. Output voltage as a function of wind speed for fluctuating wind (mean velocity: 7.85 m/s, amplitude: 2.9 m/s and weak frequency:
1/12 Hz) and for gradual wind increments and decrements 
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fig.11  
Fig. 11.Threshold erosion and deposit velocities at Lac Blanc Pass.

zone (near the pass) as well as an accumulation zone. A data
logger records the following parameters every 15 min (with
a scan rate of 1 s): average, maximum and minimum wind
speed (with a Young anemometer), direction, precipitation,
and temperature. Also six acoustic sensors are installed on
this site. These sensors are located in the erosion area, in the
transport zone and in the deposition zone.
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Fig. 12. The average snowdrift signal on the acoustic sensor.

4.2 Threshold velocity of erosion and deposit

As for wind tunnel experiments, we observed in situ dif-
ferences in threshold velocities between erosion and deposit
(see Fig. 11). These differences can be explained by snow
surface conditions, temperature, and snowfall history. Like
Castelle (Castelle, 1994), we did not find a simple link be-
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Fig. 13. The snowdrift gust factor recorded by the acoustic sensor.

tween threshold erosion and deposit velocities, with some-
times a threshold deposit velocity greater than the threshold
erosion velocity. Castelle explained this by an increase in
sintering during the drifting snow episode. An other expla-
nation is that we can have different layers of snow type in the
snow mantle. If two or more snow layers are eroded during
an episode, the threshold velocity of erosion will correspond
to the upper layer, and the threshold velocity of deposit will
correspond to the lower layer. If these two layers are differ-
ent, there is no direct link between these velocities.

4.3 Drifting snow response to natural wind fluctuations

We studied the gust factor (for wind and drifting snow), de-
fined as the ratio of the maximum and average data for a
given period (Michaux, 2000).

The wind gust factor, defined as the ratio:

Gw =
Maximum wind speed

Average wind speed

can provide information on the non-stationary aspects of the
wind. Similarly, the gust factor relating to the signal of the
acoustic snowdrift sensor, defined as the ratio:

Gs=
Maximum signal of the acoustic sensor

Average signal

can provide information on the snowdrift.
To this purpose, data from the acoustic sensor were used.

We first removed the offset of the sensor (50 mV). Then, we
filtered out the average signal lower than 5 mV, because lower
values do not correspond to snowdrift. The gust factor was
then calculated every 15 min for the entire winter (sampling
frequency of 1 Hz).

We determined two types of drifting-snow events:

– a first type of periods of weak snowdrift,

– a second type of periods of heavy snowdrift.

The first scenario (weak snowdrift) corresponds to areas
1 and 3 in Fig. 12, and areas A and B in Fig. 13. In the
first case (areas 1 in Fig. 12 and A in Fig. 13), high wind
gust factors were found, indicating highly gusty winds, but

very low average snowdrift signals and snowdrift gust factors
were observed. Thus, this scenario does not show significant
erosion, snowdrift, and deposit. This case fits in well with ex-
periments done at CSTB with a rapid increase and decrease
in the wind, since we also have a non-equilibrium between
wind speed and drifting snow. The second case (areas 3 in
Fig. 12 and B in Fig. 13) is characterised by gusty snow-
drift episodes with sporadic wind gusts generating moderate
snowdrift.

The second scenario (heavy snowdrift) corresponds to
zone 2 of Fig. 11 and part C of Fig. 12. Due to the limited
output voltage of 5000 mV for the acoustic sensor, the max-
imum snowdrift gust factor is 50 for average signals greater
than 100 mV, causing the cut-off in Fig. 12. This type of
snowdrift occurs during more regular wind episodes charac-
terised by low wind gust factors.

This study of the snowdrift gust factor demonstrates that
snowdrift is more substantial and voluminous when it is gen-
erated by a regular, sufficiently strong wind than when it ap-
pears with sporadic wind gusts. Moreover, in the case of spo-
radic wind gusts, the equilibrium between wind speed and
flow is not reached.

5 Conclusions and further developments

This study gives the first results concerning the possible role
of wind gust in drifting snow. Indeed, through the wind tun-
nel experiments, we found that in fluctuating airflows, drift-
ing snow is in a state of permanent disequilibrium. Moreover,
the in situ experiments show that the heavier drifting snow
episodes appear during a period of roughly constant strong
wind, whereas a short but strong blast does not produce sig-
nificant drifting snow.

However, we need to keep in mind that this study is only
a first investigation. Further experiments should be con-
ducted in order to better understand this phenomenon. In-
deed, the type of snow grain was not taken into account in
this study of in situ experiments. This type of grain can in-
fluence the threshold velocity of erosion, therefore the flux
of drifting snow for a given wind. Moreover, this grain type
may have an influence on the signal recorded on our acous-
tic sensor. Until now, this influence has not been taken into
account. Moreover, experiments at Lac Blanc Pass were
performed with a data logger that records only the average
wind speed over 15 minutes, and the maximum and min-
imum wind speed over 15 min. Consequently, we need to
conduct new experiments, with a smaller time period.
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