15 research outputs found

    Including an ocean carbon cycle model into iLOVECLIM (v1.0)

    Get PDF
    The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a climate model to understand and simulate past and future changes of the carbon cycle. In particular, natural variations of atmospheric CO2 have happened in the past, while anthropogenic carbon emissions are likely to continue in the future. To study changes of the carbon cycle and climate on timescales of a few hundred to a few thousand years, we have included a simple carbon cycle model into the iLOVECLIM Earth System Model. In this study, we describe the ocean and terrestrial biosphere carbon cycle models and their performance relative to observational data. We focus on the main carbon cycle variables including the carbon isotope ratios δ13C and the Δ14C. We show that the model results are in good agreement with modern observations both at the surface and in the deep ocean for the main variables, in particular phosphates, dissolved inorganic carbon and the carbon isotopes

    Last Glacial Maximum CO2 and δ13C successfully reconciled

    Get PDF
    During the Last Glacial Maximum (LGM, ∼21,000 years ago) the cold climate was strongly tied to low atmospheric CO2 concentration (∼190 ppm). Although it is generally assumed that this low CO2 was due to an expansion of the oceanic carbon reservoir, simulating the glacial level has remained a challenge especially with the additional δ13C constraint. Indeed the LGM carbon cycle was also characterized by a modern-like δ13C in the atmosphere and a higher surface to deep Atlantic δ13C gradient indicating probable changes in the thermohaline circulation. Here we show with a model of intermediate complexity, that adding three oceanic mechanisms: brine induced stratification, stratification-dependant diffusion and iron fertilization to the standard glacial simulation (which includes sea level drop, temperature change, carbonate compensation and terrestrial carbon release) decreases CO2 down to the glacial value of ∼190 ppm and simultaneously matches glacial atmospheric and oceanic δ13C inferred from proxy data. LGM CO2 and δ13C can at last be successfully reconciled

    Implementing a coral reef CaCO3 production module in the iLOVECLIM climate model

    Full text link
    Coral reef development is intricately linked to both climate and the concentration of atmospheric CO2, specifically through temperature and carbonate chemistry in the upper ocean. In turn, the calcification of corals modifies the concentration of dissolved inorganic carbon and total alkalinity in the ocean, impacting air-sea gas exchange, atmospheric CO2 concentration, and ultimately the climate. This retroaction between atmospheric conditions and coral biogeochemistry can only be accounted for with a coupled coral-carbon-climate model. Here we present the implementation of a coral reef calcification module into an Earth System model. Simulated coral reef production of the calcium carbonate mineral aragonite depends on photosynthetically active radiation, nutrient concentrations, salinity, temperature and the aragonite saturation state. An ensemble of 210 parameter perturbation simulations was performed to identify carbonate production parameter values that optimise the simulated distribution of coral reefs and associated carbonate production. The tuned model simulates the presence of coral reefs and regional-to-global carbonate production values in good agreement with data-based estimates. The model enables assessment of past and future coral-climate coupling on seasonal to millennial timescales, highlighting how climatic trends and variability may affect reef development and the resulting climate-carbon feedback.SERENATA4. Quality educatio

    Editorial: What can we learn from past warm worlds for our future?

    No full text
    International audienceHorizons highlights paleoscience topics of interest to the next generation, written in an easy to understand, visual format. It is a scientific review of why paleosciences are important, mainly aimed at older high-school students and undergraduate students interested in environmental issues and global change. It promotes the use of comics, pictures, and drawings that support short papers with strong messages about past sciences and how to prepare for a changing future

    Deglacial climate changes as forced by different ice sheet reconstructions

    No full text
    Abstract. During the last deglaciation, the climate evolves from a cold state at the Last Glacial Maximum (LGM) at 21 ka (thousand years ago) with large ice sheets to the warm Holocene at ∼9 ka with reduced ice sheets. The deglacial ice sheet melt can impact the climate through multiple ways: changes of topography and albedo, bathymetry and coastlines, and freshwater fluxes (FWFs). In the PMIP4 (Paleoclimate Modelling Intercomparison Project – Phase 4) protocol for deglacial simulations, these changes can be accounted for or not depending on the modelling group choices. In addition, two ice sheet reconstructions are available (ICE-6G_C and GLAC-1D). In this study, we evaluate all these effects related to ice sheet changes on the climate using the iLOVECLIM model of intermediate complexity. We show that the two reconstructions yield the same warming to a first order but with a different amplitude (global mean temperature of 3.9 ∘C with ICE-6G_C and 3.8 ∘C with GLAC-1D) and evolution. We obtain a stalling of temperature rise during the Antarctic Cold Reversal (ACR, from ∼14 to ∼12 ka) similar to proxy data only with the GLAC-1D ice sheet reconstruction. Accounting for changes in bathymetry in the simulations results in a cooling due to a larger sea ice extent and higher surface albedo. Finally, freshwater fluxes result in Atlantic meridional overturning circulation (AMOC) drawdown, but the timing in the simulations disagrees with proxy data of ocean circulation changes. This questions the causal link between reconstructed freshwater fluxes from ice sheet melt and recorded AMOC weakening

    Editorial: What can we learn from past warm worlds for our future?

    No full text
    International audienceHorizons highlights paleoscience topics of interest to the next generation, written in an easy to understand, visual format. It is a scientific review of why paleosciences are important, mainly aimed at older high-school students and undergraduate students interested in environmental issues and global change. It promotes the use of comics, pictures, and drawings that support short papers with strong messages about past sciences and how to prepare for a changing future

    Dynamics of Spontaneous (Multi) Centennial‐Scale Variations of the Atlantic Meridional Overturning Circulation Strength During the Last Interglacial

    No full text
    Recent reconstructions of bottom water δ13C during the last interglacial (LIG) suggest short-lived variability in the Atlantic meridional overturning circulation (AMOC). Spontaneous (multi) centennial-scale variability of the AMOC simulated in the Earth system model of intermediate complexity iLOVECLIM are investigated for that period. The model simulates abrupt AMOC transitions occurring at 300 years frequency and correspond to a switch of the AMOC vigor between a strong (∼17 Sv) and a weak (∼11 Sv) state. The onset of these abrupt transitions is associated with changes in orbital forcings resulting in the decline of summer insolation in the high latitudes of the North Atlantic and affecting the sea ice cover in two key deep convection regions: (1) the northern Nordic Seas (NNS) and (2) the northwest North Atlantic (NWNA). Northward inflow of Atlantic surface water increases the convection depth in (1) and strengthens the Greenland Iceland Norway (GIN) Seas overturning circulation. Subsequent ocean-atmosphere interactions involving sea ice, ocean heat release, anomalies of evaporation-precipitation, and wind stress over the Nordic Seas lead also to an increase in deep convection in (2), followed by increase in the AMOC strength

    Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nine interglacials

    Get PDF
    Atmospheric CO2 levels during interglacials prior to the Mid-Brunhes Event (MBE, ĝ1/4 ĝ€-430ĝ€-kaĝ€†BP) were around 40ĝ€-ppm lower than after the MBE. The reasons for this difference remain unclear. A recent hypothesis proposed that changes in oceanic circulation, in response to different external forcings before and after the MBE, might have increased the ocean carbon storage in pre-MBE interglacials, thus lowering atmospheric CO2. Nevertheless, no quantitative estimate of this hypothesis has been produced up to now. Here we use an intermediate complexity model including the carbon cycle to evaluate the response of the carbon reservoirs in the atmosphere, ocean and land in response to the changes of orbital forcings, ice sheet configurations and atmospheric CO2 concentrations over the last nine interglacials. We show that the ocean takes up more carbon during pre-MBE interglacials in agreement with data, but the impact on atmospheric CO2 is limited to a few parts per million. Terrestrial biosphere is simulated to be less developed in pre-MBE interglacials, which reduces the storage of carbon on land and increases atmospheric CO2. Accounting for different simulated ice sheet extents modifies the vegetation cover and temperature, and thus the carbon reservoir distribution. Overall, atmospheric CO2 levels are lower during these pre-MBE simulated interglacials including all these effects, but the magnitude is still far too small. These results suggest a possible misrepresentation of some key processes in the model, such as the magnitude of ocean circulation changes, or the lack of crucial mechanisms or internal feedbacks, such as those related to permafrost, to fully account for the lower atmospheric CO2 concentrations during pre-MBE interglacials

    Glacial carbonate compensation in the Pacific Ocean constrained from paired oxygen and carbonate system reconstructions

    Full text link
    editorial reviewedThe tendency of CaCO_3 dissolution/burial to minimise changes in the carbonate ion concentration of the deep ocean following perturbations to the carbon cycle (‘carbonate compensation’) is thought to act as a first order control on atmospheric CO_2 on timescales of ~10^3 to 10^5 years. Although carbonate compensation could account for up to ~half of the glacial drawdown of CO_2, quantitative estimates of changes in ocean alkalinity are lacking. As such, the role of carbonate compensation in driving glacial-interglacial CO_2 variations remains poorly understood. Here, we combine paired reconstructions of dissolved oxygen from the infaunal-epifaunal benthic foraminiferal δ^13C proxy (Δδ^13C) and the carbonate system from boron proxies (B/Ca, δ^11B) in benthic foraminifera; this approach allows us to quantify both changes in deep ocean respired CO_2 storage, and the response of the carbonate system to this addition/removal of respired CO_2, providing the first quantitative estimates on the amount and timing of alkalinity changes in the deep Pacific during the Last Glacial Maximum (LGM) and over deglaciation. Our results indicate an increase in deep ocean alkalinity during the LGM, and suggest the buffering of the deep ocean may occur substantially faster than the canonical timescale of ~5 kyr (Broecker and Peng, 1987). We present results from a series of sensitivity experiments and long-term simulations using the recently coupled iLOVECLIM-MEDUSA climate/carbon-cycle/sediment model, with implications for our understanding of carbonate compensation in both glacial times, and the long-term future
    corecore