104 research outputs found

    Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis

    Get PDF
    The structural basis of the antifracture efficacy of strontium ranelate and alendronate is incompletely understood. We compared the effects of strontium ranelate and alendronate on distal tibia microstructure over 2 years using HR-pQCT. In this pre-planned, interim, intention-to-treat analysis at 12 months, 88 osteoporotic postmenopausal women (mean age 63.7 ± 7.4) were randomized to strontium ranelate 2 g/day or alendronate 70 mg/week in a double-placebo design. Primary endpoints were changes in microstructure. Secondary endpoints included lumbar and hip areal bone mineral density (aBMD), and bone turnover markers. This trial is registered with http://www.controlled-trials.com, number ISRCTN82719233. Baseline characteristics of the two groups were similar. Treatment with strontium ranelate was associated with increases in mean cortical thickness (CTh, 5.3%), cortical area (4.9%) and trabecular density (2.1%) (all P < 0.001, except cortical area P = 0.013). No significant changes were observed with alendronate. Between-group differences in favor of strontium ranelate were observed for CTh, cortical area, BV/TV and trabecular density (P = 0.045, 0.041, 0.048 and 0.035, respectively). aBMD increased to a similar extent with strontium ranelate and alendronate at the spine (5.7% versus 5.1%, respectively) and total hip (3.3% versus 2.2%, respectively). No significant changes were observed in remodeling markers with strontium ranelate, while suppression was observed with alendronate. Within the methodological constraints of HR-pQCT through its possible sensitivity to X-ray attenuation of different minerals, strontium ranelate had greater effects than alendronate on distal tibia cortical thickness and trabecular volumetric density

    Computationally-Optimized Bone Mechanical Modeling from High-Resolution Structural Images

    Get PDF
    Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived micro-finite element (μFE) simulations have been shown to correlate well with results obtained by mechanical testing of cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and computation time), which are dependent on the number of finite elements in the image-derived bone model. A detailed description of our approach is provided, which is specifically optimized for μFE modeling of the complex three-dimensional architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge (and 40 MB RAM). To illustrate the system's potential for large-scale μFE simulations, axial stiffness was estimated from high-resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical computation times on high-end desktop computers with applications to laboratory studies and clinical imaging

    Mild cognitive impairment is associated with poor physical function but not bone structure or density in late adulthood:Findings from the Hertfordshire Cohort Study

    Get PDF
    Mini Abstract This study investigated the association between mild cognitive impairment (MCI) and physical function and bone health in older adults. MCI was associated with poor physical performance but not bone mineral density or bone microarchitecture. Abstract Purpose: Cross-sectional study to investigate the association between mild cognitive impairment (MCI) and physical performance, and bone health, in a community-dwelling cohort of older adults. Methods: Cognitive function of 222 men and 221 women (mean age 75.5 and 75.8 years in men and women, respectively) was assessed by the Strawbridge questionnaire and Mini Mental State Exam (MMSE). Participants underwent dual-energy x-ray absorptiometry (DXA), peripheral-quantitative computed tomography (pQCT) and high-resolution peripheral-quantitative computed tomography (HR-pQCT) scans to assess their bone density, strength and microarchitecture. Their physical function was assessed and a physical performance (PP) score was recorded. Results: 11.8% of women and 8.1% of men in the study were cognitive impaired on the MMSE (score&lt;24). 24% of women were deemed cognitively impaired on the Strawbridge questionnaire, compared to 22.3% of men. Cognitive impairment on the Strawbridge questionnaire was associated with poorer physical performance score in men but not women in the unadjusted analysis. MMSE &lt;24 was strongly associated with the risk of low physical performance in men (OR 12.9, 95% CI 1.67, 99.8, p=0.01) Higher MMSE score was associated with better physical performance in both sexes. Poorer cognitive function, whether assessed by the Strawbridge questionnaire, or by MMSE score, was not associated with bone density, shape or microarchitecture, in either sex. Conclusion: MCI in older adults was associated with poor physical performance, but not bone density, shape or microarchitecture

    The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of peroxisome proliferator-activated receptor (PPAR)gamma is associated with bone loss and increased fracture risk, while PPARalpha activation seems to have positive skeletal effects. To further explore these effects we have examined the effect of the PPARalpha agonists fenofibrate and Wyeth 14643, and the PPARgamma agonist pioglitazone, on bone mineral density (BMD), bone architecture and biomechanical strength in ovariectomized rats.</p> <p>Methods</p> <p>Fifty-five female Sprague-Dawley rats were assigned to five groups. One group was sham-operated and given vehicle (methylcellulose), the other groups were ovariectomized and given vehicle, fenofibrate, Wyeth 14643 and pioglitazone, respectively, daily for four months. Whole body and femoral BMD were measured by dual X-ray absorptiometry (DXA), and biomechanical testing of femurs, and micro-computed tomography (microCT) of the femoral shaft and head, were performed.</p> <p>Results</p> <p>Whole body and femoral BMD were significantly higher in sham controls and ovariectomized animals given fenofibrate, compared to ovariectomized controls. Ovariectomized rats given Wyeth 14643, maintained whole body BMD at sham levels, while rats on pioglitazone had lower whole body and femoral BMD, impaired bone quality and less mechanical strength compared to sham and ovariectomized controls. In contrast, cortical volume, trabecular bone volume and thickness, and endocortical volume were maintained at sham levels in rats given fenofibrate.</p> <p>Conclusions</p> <p>The PPARalpha agonist fenofibrate, and to a lesser extent the PPARaplha agonist Wyeth 14643, maintained BMD and bone architecture at sham levels, while the PPARgamma agonist pioglitazone exaggerated bone loss and negatively affected bone architecture, in ovariectomized rats.</p

    The Founder’s Lecture 2009: advances in imaging of osteoporosis and osteoarthritis

    Get PDF
    The objective of this review article is to provide an update on new developments in imaging of osteoporosis and osteoarthritis over the past three decades. A literature review is presented that summarizes the highlights in the development of bone mineral density measurements, bone structure imaging, and vertebral fracture assessment in osteoporosis as well as MR-based semiquantitative assessment of osteoarthritis and quantitative cartilage matrix imaging. This review focuses on techniques that have impacted patient management and therapeutic decision making or that potentially will affect patient care in the near future. Results of pertinent studies are presented and used for illustration. In summary, novel developments have significantly impacted imaging of osteoporosis and osteoarthritis over the past three decades

    The SPECTRA Collaboration OMERACT Special Interest Group: Current Research and Future Directions

    Get PDF
    Objective High-resolution peripheral quantitative computed tomography (HR-pQCT) has the potential to improve radiographic progression determination in clinical trials and longitudinal observational studies. The goal of this work was to describe the current state of research presented at Outcome Measures in Rheumatology (OMERACT) 2016 and ensuing future directions outlined during discussion among attendees. Methods At OMERACT 2016, SPECTRA (Study grouP for xtrEme-Computed Tomography in Rheumatoid Arthritis) introduced efforts to (1) validate the HR-pQCT according to OMERACT guidelines, focusing on rheumatoid arthritis (RA), and (2) find alternatives for automated joint space width (JSW) analysis. The Special Interest Group (SIG) was presented to patient research partners, physicians/researchers, and SIG leaders followed by a 40-min discussion on future directions. Results A consensus definition for RA erosion using HR-pQCT was demonstrated through a systematic literature review and a Delphi exercise. Histopathology and perfusion studies were presented that analyzed the true characteristics of cortical breaks in HR-pQCT images, and to provide criterion validity. Results indicate that readers were able to discriminate between erosion and small vascular channels. Moderate reliability (ICC 0.206–0.871) of direct erosion size measures was shown, which improved (> 0.9) only when experienced readers were considered. Quantification of erosion size was presented for scoring, direct measurement, and volumetric approaches, as well as a reliability exercise for direct measurement. Three methods for JSW measurement were compared, all indicating excellent reproducibility with differences at the extremes (i.e., near-zero and joint edge thickness). Conclusion Initial reports on HR-pQCT are promising; however, to consider its use in clinical trials and longitudinal observational studies, it is imperative to assess the responsiveness of erosion measurement quantification

    Teriparatide treatment exerts differential effects on the central and peripheral skeleton: results from the MOAT study

    Get PDF
    The central and peripheral skeleton was characterised using imaging techniques during 104 weeks of teriparatide treatment. Teriparatide exerts differential effects on the central and the peripheral skeleton. Overall, we did not observe a change in total body bone mineral. Our conclusions are constrained by the study limitations. INTRODUCTION: Teriparatide stimulates bone formation and resorption and therefore can cause bone gain and loss. We simultaneously characterised the central and peripheral skeleton using imaging techniques to better understand the mechanism of action of teriparatide. METHODS: Postmenopausal, osteoporotic women (n = 20, 65.4 ± 5.5 years) were recruited into a 104-week study of teriparatide. Imaging techniques included DXA, quantitative computed tomography (QCT), and high-resolution peripheral quantitative computed tomography (HR-pQCT). RESULTS: Total lumbar spine areal bone mineral content (aBMC) (+ 11.2%), total lumbar spine areal bone mineral density (aBMD) (+ 8.1%), subregional thoracic spine aBMD (+ 7.5%), lumbar spine aBMC (+ 23.5%), lumbar spine aBMD (+ 11.9%), pelvis aBMC (+ 9.3%), and pelvis aBMD (+ 4.3%) increased. However, skull aBMC (- 5.0%), arms aBMC (- 5.1%), legs aBMC (- 2.9%), and legs aBMD (- 2.5%) decreased. Overall, we did not observe a change in total body bone mineral. Increases in L1-L3 volumetric BMD (vBMD) (+ 28.5%) occurred but there was no change in total proximal femur vBMD. Radius and tibia cortical vBMD (- 3.3 and - 3.4%) and tissue mineral density (- 3.2 and - 3.8%) decreased and there was an increase in porosity (+ 21.2 and + 10.3%). Tibia, but not radius, trabecular inhomogeneity (+ 3.2%), and failure load (+ 0.2%) increased, but cortical thickness (- 3.1%), area (- 2.9%), and pore volume (- 1.6%) decreased. CONCLUSIONS: Teriparatide exerts differential effects on the central and the peripheral skeleton. Central trabecular vBMD (L1-L3) is improved, but there is a concomitant decrease in peripheral cortical vBMD and an increase in porosity. Overall, we did not observe a change in total body bone mineral. We acknowledge that our conclusions may be speculative and are constrained by the technical limitations of the imaging techniques used, the lack of a control group, and the small sample size studied

    Unmet needs and current and future approaches for osteoporotic patients at high risk of hip fracture

    Full text link
    corecore