254 research outputs found

    Isolation and Characterization of Novel Microsatellite Markers for Yellow Perch (Perca flavescens)

    Get PDF
    To perform whole genome scanning for complex trait analysis, we isolated and characterized a total of 21 novel genomic-SSRs and EST-SSRs for yellow perch (Perca flavescens), using the methods of construction of SSR-enrichment libraries and EST database mining of a related species P. fluviatilis. Of 16 genomic-SSR primer pairs examined, eight successfully amplified scorable products. The number of alleles at these informative loci varied from 3 – 14 with an average of 8.5 alleles per locus. When tested on wild perch from a population in Pennsylvania, observed and expected heterozygosities ranged from 0.07 – 0.81 and from 0.37 – 0.95, respectively. Of 2,226 EST sequences examined, only 110 (4.93%) contained microsatellites and for those, 13 markers were tested, 12 of which exhibited polymorphism. Compared with genomic-SSRs, EST-SSRs exhibited a lower level of genetic variability with the number of alleles of averaging only 2.6 alleles per locus. Cross-species utility indicated that three of the genomic-SSRs and eight of the EST-SSRs successfully cross-amplified in a related species, the walleye (Sander vitreus)

    Genetic Approaches To The Analysis of Body Colouration in Nile Tilapia (Oreochromis niloticus)

    Get PDF
    Body colouration in tilapia is an important trait affecting consumer preference. In the Nile tilapia (Oreochromis niloticus), there are three colour variants which are normal (wild type), red and blond. In some countries, the red variant is important and reaches higher prices in the market. However, one major problem regarding red tilapia culture is their body colouration which is often associated with blotching (mainly black but also red) which is undesirable for the consumer. The overall aim of this work was to expand knowledge on various aspects of body colouration in Nile tilapia using genetic approaches. The results of this research are presented as four different manuscripts. The manuscripts (here referred as Papers) have either been published (Paper IV) or are to be submitted (Paper I, II and III) in relevant peer reviewed journals. Paper I and II investigated the inheritance of black blotching and other body colour components of the red body colour. Specifically, Paper I consisted of two preliminary trials (Trial 1 and 2), to look at the ontogeny of black blotching and body colour components over a period of six months. Trial 1 investigated the effect of tank background colour (light vs dark) on black blotching and other body colour components and was carried out using a fully inbred (all female) clonal red line. Trial 2 was carried out using mixed sex fish and was aimed to investigate the association of black blotching with the sex of the fish. The results from this study were used to guide the experiment described in Paper II. Sixteen red sires with various levels of black and red blotching were crossed to clonal females and the inheritance of blotching and other body colour components were investigated using parent-offspring regressions. The results showed no significant heritability for black blotching and body redness, but a significant correlation for body redness and black blotching was found in female offspring at one sampling point suggesting that attempts to increase body redness may increase black blotching, as had been hypothesized. Paper III was divided into two parts. The first objective was to map the blond locus onto the tilapia linkage map and the second was to investigate the interaction of the blond and red genes on black blotching using the blond-linked markers to distinguish different blond genotypes in heterozygous red fish (i.e. RrBlbl or Rrblbl). In the blond fish, the formation of melanin is almost blocked via much reduced melanophores and this feature may be able to help reducing the black blotching in red tilapia. Two intraspecific families (O. niloticus) and one interspecific family (O. aureus and O. niloticus) were used as mapping families and the blond locus was located in LG5. Four out of eight markers were successfully used to assess the interaction of blond on red blotched fish. The blond gene did not significantly reduce the area of blotching but did reduce the saturation (paler blotching) and enhanced the redness of body colour in the Rrblbl fish compared to the RrBlbl group. Finally, Paper IV aimed to find out the effect of male colouration on reproductive success in Nile tilapia. A choice of one wild type male and one red male was presented to red or wild type females and these fish were allowed to spawn under semi-natural spawning conditions. Eggs were collected from the female’s mouth after spawning and paternity was assessed using microsatellite genotyping and phenotype scoring. No significant departures from equal mating success were observed between the red and wild type males, however there was a significant difference between the red and wild type females in the frequency of secondary paternal contribution to egg batches. The results suggest that mating success of wild type and red tilapia is approximately equal. The results from this research help to broaden our knowledge and understanding on the aspects of body colouration in Nile tilapia and provide fundamental information for further research

    The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca)

    Get PDF
    Habitat fragmentation may disrupt original patterns of gene flow and lead to drift‐induced differentiation among local population units. Top predators such as the jaguar may be particularly susceptible to this effect, given their low population densities, leading to small effective sizes in local fragments. On the other hand, the jaguar’s high dispersal capabilities and relatively long generation time might counteract this process, slowing the effect of drift on local populations over the time frame of decades or centuries. In this study, we have addressed this issue by investigating the genetic structure of jaguars in a recently fragmented Atlantic Forest region, aiming to test whether loss of diversity and differentiation among local populations are detectable, and whether they can be attributed to the recent effect of drift. We used 13 microsatellite loci to characterize the genetic diversity present in four remnant populations, and observed marked differentiation among them, with evidence of recent allelic loss in local areas. Although some migrant and admixed individuals were identified, our results indicate that recent large‐scale habitat removal and fragmentation among these areas has been sufficiently strong to promote differentiation induced by drift and loss of alleles at each site. Low estimated effective sizes supported the inference that genetic drift could have caused this effect within a short time frame. These results indicate that jaguars’ ability to effectively disperse across the human‐dominated landscapes that separate the fragments is currently very limited, and that each fragment contains a small, isolated population that is already suffering from the effects of genetic drift.Fil: Haag, Taiana. Universidade Federal do Rio Grande do Sul; Brasil. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Santos, Analisie S.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Sana, Dênis A.. Instituto Pró-Carnívoros; BrasilFil: Morato, Ronaldo G.. Centro Nacional de Pesquisa e Conservaçao de Mamíferos Carnívoros; Argentina. Instituto Pró-Carnívoros; BrasilFil: Cullen Jr., Laury. Instituto de Pesquisas Ecológicas; BrasilFil: Crawshaw Jr., Peter G.. Centro Nacional de Pesquisa e Conservaçao de Mamíferos Carnívoros; ArgentinaFil: de Angelo, Carlos Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Centro de Investigaciones del Bosque Atlántico; ArgentinaFil: Di Bitetti, Mario Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Centro de Investigaciones del Bosque Atlántico; ArgentinaFil: Salzano, Francisco M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Eizirik, Eduardo. Pontificia Universidade Católica do Rio Grande do Sul; Brasi

    Comparative analysis of microsatellite variability in five macaw species (Psittaciformes, Psittacidae): Application for conservation

    Get PDF
    Cross-amplification was tested and variability in microsatellite primers (designed for Neotropical parrots) compared, in five macaw species, viz., three endangered blue macaws (Cyanopsitta spixii [extinct in the wild], Anodorhynchus leari [endangered] and Anodorhynchus hyacinthinus [vulnerable]), and two unthreatened red macaws (Ara chloropterus and Ara macao). Among the primers tested, 84.6% successfully amplified products in C. spixii, 83.3% in A. leari, 76.4% in A. hyacinthinus, 78.6% in A. chloropterus and 71.4% in A. macao. The mean expected heterozygosity estimated for each species, and based on loci analyzed in all the five, ranged from 0.33 (A. hyacinthinus) to 0.85 (A. macao). As expected, the results revealed lower levels of genetic variability in threatened macaw species than in unthreatened. The low combined probability of genetic identity and the moderate to high potential for paternity exclusion, indicate the utility of the microsatellite loci set selected for each macaw species in kinship and population studies, thus constituting an aid in planning in-situ and ex-situ conservation

    Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae)

    Get PDF
    This is the author's accepted manuscript, made available with the permission of the publisher.This research was supported by NIH grant GM073990 and NSF grant DEB-0543052 to J. K. Kelly, NSF grants DEB-9629457 and DEB-9981891 to R. G. Shaw, and NSF DEB-0108242 to M. Orive. M. E. Mort acknowledges DEB-0344883

    Universal Primers Used for Species Identification of Foodstuff of Animal Origin: Effects of Oligonucleotide Tails on PCR Amplification and Sequencing Performance

    Get PDF
    M13 universal non-homologous oligonucleotide tails incorporated into universal primers have been shown to improve amplification and sequencing performance. However, a few protocols use these tails in the field of food inspection. In this study, two types of M13 tails (by Steffens and Messing) were selected to assess their benefits using universal cytochrome oxidase subunit I (COI) and 16S ribosomal RNA gene (16SrRNA) primers in standard procedures. The primer characteristics were tested in silico. Then, using 20 DNA samples of edible species (birds, fishes, and mammals), their performance during PCR amplification (band recovery and intensity) and sequencing (sequence recovery, length, and Phred score) was assessed and compared. While 16SrRNA tailed and non-tailed primers performed similarly, differences were found for COI primers. Messing’s tails negatively affected the reaction outputs, while Steffens’ tails significantly improved the band intensity and the length of the final contigs based on the individual bidirectional read sequence. This different performance could be related to a destabilization effect of certain tails on primers with unfavorable mismatches on the annealing region. Even though our results cannot be generalized because the tail performances are strictly dependent on laboratory conditions, they show that appropriate tails can improve the overall throughput of the analysis, supporting food traceabilit

    Estimates of linkage disequilibrium and effective population size in rainbow trout

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of molecular genetic technologies for broodstock management and selective breeding of aquaculture species is becoming increasingly more common with the continued development of genome tools and reagents. Several laboratories have produced genetic maps for rainbow trout to aid in the identification of loci affecting phenotypes of interest. These maps have resulted in the identification of many quantitative/qualitative trait loci affecting phenotypic variation in traits associated with albinism, disease resistance, temperature tolerance, sex determination, embryonic development rate, spawning date, condition factor and growth. Unfortunately, the elucidation of the precise allelic variation and/or genes underlying phenotypic diversity has yet to be achieved in this species having low marker densities and lacking a whole genome reference sequence. Experimental designs which integrate segregation analyses with linkage disequilibrium (LD) approaches facilitate the discovery of genes affecting important traits. To date the extent of LD has been characterized for humans and several agriculturally important livestock species but not for rainbow trout.</p> <p>Results</p> <p>We observed that the level of LD between syntenic loci decayed rapidly at distances greater than 2 cM which is similar to observations of LD in other agriculturally important species including cattle, sheep, pigs and chickens. However, in some cases significant LD was also observed up to 50 cM. Our estimate of effective population size based on genome wide estimates of LD for the NCCCWA broodstock population was 145, indicating that this population will respond well to high selection intensity. However, the range of effective population size based on individual chromosomes was 75.51 - 203.35, possibly indicating that suites of genes on each chromosome are disproportionately under selection pressures.</p> <p>Conclusions</p> <p>Our results indicate that large numbers of markers, more than are currently available for this species, will be required to enable the use of genome-wide integrated mapping approaches aimed at identifying genes of interest in rainbow trout.</p

    A first generation BAC-based physical map of the rainbow trout genome

    Get PDF
    Background: Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. A bacterial artificial chromosome (BAC) physical map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) for improving rainbow trout aquaculture production. This resource will also facilitate efforts to obtain and assemble a whole-genome reference sequence for this species.[br/] Results: The physical map was constructed from DNA fingerprinting of 192,096 BAC clones using the 4-color high-information content fingerprinting (HICF) method. The clones were assembled into physical map contigs using the finger-printing contig (FPC) program. The map is composed of 4,173 contigs and 9,379 singletons. The total number of unique fingerprinting fragments (consensus bands) in contigs is 1,185,157, which corresponds to an estimated physical length of 2.0 Gb. The map assembly was validated by 1) comparison with probe hybridization results and agarose gel fingerprinting contigs; and 2) anchoring large contigs to the microsatellite-based genetic linkage map.[br/] Conclusion: The production and validation of the first BAC physical map of the rainbow trout genome is described in this paper. We are currently integrating this map with the NCCCWA genetic map using more than 200 microsatellites isolated from BAC end sequences and by identifying BACs that harbor more than 300 previously mapped markers. The availability of an integrated physical and genetic map will enable detailed comparative genome analyses, fine mapping of QTL, positional cloning, selection of positional candidate genes for economically important traits and the incorporation of MAS into rainbow trout breeding programs
    corecore