176 research outputs found

    Controls on sill and dyke-sill hybrid geometry and propagation in the crust: The role of fracture toughness

    Get PDF
    Analogue experiments using gelatine were carried out to investigate the role of the mechanical properties of rock layers and their bonded interfaces on the formation and propagation of magma-filled fractures in the crust. Water was injected at controlled flux through the base of a clear-Perspex tank into superposed and variably bonded layers of solidified gelatine. Experimental dykes and sills were formed, as well as dyke-sill hybrid structures where the ascending dyke crosses the interface between layers but also intrudes it to form a sill. Stress evolution in the gelatine was visualised using polarised light as the intrusions grew, and its evolving strain was measured using digital image correlation (DIC). During the formation of dyke-sill hybrids there are notable decreases in stress and strain near the dyke as sills form, which is attributed to a pressure decrease within the intrusive network. Additional fluid is extracted from the open dykes to help grow the sills, causing the dyke protrusion in the overlying layer to be almost completely drained. Scaling laws and the geometry of the propagating sill suggest sill growth into the interface was toughness-dominated rather than viscosity-dominated. We define KIc* as the fracture toughness of the interface between layers relative to the lower gelatine layer KIcInt / KIcG. Our results show that KIc* influences the type of intrusion formed (dyke, sill or hybrid), and the magnitude of KIcInt impacted the growth rate of the sills. KIcInt was determined during setup of the experiment by controlling the temperature of the upper layer Tm when it was poured into place, with Tm < 24 °C resulting in an interface with relatively low fracture toughness that is favourable for sill or dyke-sill hybrid formation. The experiments help to explain the dominance of dykes and sills in the rock record, compared to intermediate hybrid structures

    Morphological analysis on the coherence of kHz QPOs

    Full text link
    We take the recently published data of twin kHz quasi-period oscillations (QPOs) in neutron star (NS) lowmass X-ray binaries (LMXBs) as the samples, and investigate the morphology of the samples, which focuses on the quality factor, peak frequency of kHz QPOs, and try to infer their physical mechanism. We notice that: (1) The quality factors of upper kHz QPOs are low (2 ~ 20 in general) and increase with the kHz QPO peak frequencies for both Z and Atoll sources. (2) The distribution of quality factor versus frequency for the lower kHz QPOs are quite different between Z and Atoll sources. For most Z source samples, the quality factors of lower kHz QPOs are low (usually lower than 15) and rise steadily with the peak frequencies except for Sco X-1, which drop abruptly at the frequency of about 750 Hz. While for most Atoll sources, the quality factors of lower kHz QPOs are very high (from 2 to 200) and usually have a rising part, a maximum and an abrupt drop. (3) There are three Atoll sources (4U 1728-34, 4U 1636-53 and 4U 1608-52) of displaying very high quality factors for lower kHz QPOs. These three sources have been detected with the spin frequencies and sidebands, in which the source with higher spin frequency presents higher quality factor of lower kHz QPOs and lower difference between sideband frequency and lower kHz QPO frequency.Comment: 8 pages, 8 figures, publishe

    Superluminal motion of a relativistic jet in the neutron star merger GW170817

    Get PDF
    The binary neutron star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual rise in the emission with time as t^0.8, a peak at about 150 days post-merger, followed by a relatively rapid decline. To date, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon and a successful-jet cocoon (a.k.a. structured jet). However, the observational data have remained inconclusive as to whether GW170817 launched a successful relativistic jet. Here we show, through Very Long Baseline Interferometry, that the compact radio source associated with GW170817 exhibits superluminal motion between two epochs at 75 and 230 days post-merger. This measurement breaks the degeneracy between the models and indicates that, while the early-time radio emission was powered by a wider-angle outflow (cocoon), the late-time emission was most likely dominated by an energetic and narrowly-collimated jet, with an opening angle of <5 degrees, and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the growing evidence linking binary neutron star mergers and short gamma-ray bursts.Comment: 42 pages, 4 figures (main text), 2 figures (supplementary text), 2 tables. Referee and editor comments incorporate

    The Scientific Performance of the Microchannel X-ray Telescope on board the SVOM Mission

    Full text link
    The Microchannel X-ray Telescope (MXT) will be the first focusing X-ray telescope based on a "Lobster-Eye" optical design to be flown on Sino-French mission SVOM. SVOM will be dedicated to the study of Gamma-Ray Bursts and more generally time-domain astrophysics. The MXT telescope is a compact (focal length ~ 1.15 m) and light (< 42 kg) instrument, sensitive in the 0.2--10 keV energy range. It is composed of an optical system, based on micro-pore optics (MPOs) of 40 micron pore size, coupled to a low-noise pnCDD X-ray detector. In this paper we describe the expected scientific performance of the MXT telescope, based on the End-to-End calibration campaign performed in fall 2021, before the integration of the SVOM payload on the satellite.Comment: 22 pages, 12 figures, accepted for publication in Experimental Astronom

    H.E.S.S. observations of gamma-ray bursts in 2003-2007

    Full text link
    Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray bursts (GRBs) in some scenarios. Exploring this photon energy regime is necessary for understanding the energetics and properties of GRBs. GRBs have been one of the prime targets for the H.E.S.S. experiment, which makes use of four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays. Dedicated observations of 32 GRB positions were made in the years 2003-2007 and a search for VHE gamma-ray counterparts of these GRBs was made. Depending on the visibility and observing conditions, the observations mostly start minutes to hours after the burst and typically last two hours. Results from observations of 22 GRB positions are presented and evidence of a VHE signal was found neither in observations of any individual GRBs, nor from stacking data from subsets of GRBs with higher expected VHE flux according to a model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from the GRB positions were derived. For those GRBs with measured redshifts, differential upper limits at the energy threshold after correcting for absorption due to extra-galactic background light are also presented.Comment: 9 pages, 4 tables, 3 figure

    Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017

    Full text link
    Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the H.E.S.S. array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nancay Radio Telescope. Results: A signal of 173 gamma-ray photons corresponding to a statistical significance of 6.6 sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from the SED in Swift data, allows clearly classification it as a high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures

    Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status

    Get PDF
    Background: Combining MRI techniques with machine learning methodology is rapidly gaining attention as a promising method for staging of brain gliomas. This study assesses the diagnostic value of such a framework applied to dynamic susceptibility contrast (DSC)-MRI in classifying treatment-naïve gliomas from a multi-center patients into WHO grades II-IV and across their isocitrate dehydrogenase (IDH) mutation status. Methods: Three hundred thirty-three patients from 6 tertiary centres, diagnosed histologically and molecularly with primary gliomas (IDH-mutant = 151 or IDH-wildtype = 182) were retrospectively identified. Raw DSC-MRI data was post-processed for normalised leakage-corrected relative cerebral blood volume (rCBV) maps. Shape, intensity distribution (histogram) and rotational invariant Haralick texture features over the tumour mask were extracted. Differences in extracted features across glioma grades and mutation status were tested using the Wilcoxon two-sample test. A random-forest algorithm was employed (2-fold cross-validation, 250 repeats) to predict grades or mutation status using the extracted features. Results: Shape, distribution and texture features showed significant differences across mutation status. WHO grade II-III differentiation was mostly driven by shape features while texture and intensity feature were more relevant for the III-IV separation. Increased number of features became significant when differentiating grades further apart from one another. Gliomas were correctly stratified by mutation status in 71% and by grade in 53% of the cases (87% of the gliomas grades predicted with distance less than 1). Conclusions: Despite large heterogeneity in the multi-center dataset, machine learning assisted DSC-MRI radiomics hold potential to address the inherent variability and presents a promising approach for non-invasive glioma molecular subtyping and grading

    Discovery of two candidate pulsar wind nebulae in very-high-energy gamma rays

    Get PDF
    Context. We present the discovery of two very-high-energy γ-ray sources in an ongoing systematic search for emission above 100 GeV from pulsar wind nebulae in survey data from the HESS telescope array. Aims. Imaging Atmospheric Cherenkov Telescopes are ideal tools for searching for extended emission from pulsar wind nebulae in the very-high-energy regime. HESS, with its large field of view of 5° and high sensitivity, gives new prospects for the search for these objects. Methods. An ongoing systematic search for very-high-energy emission from energetic pulsars over the region of the Galactic plane between -60° < l < 30°, -2° < b < 2° is performed. For the resulting candidates, the standard HESS analysis was applied and a search for multiwavelength counterparts was performed. Results. We present the discovery of two new candidate γ-ray pulsar wind nebulae, HESS J1718-385 and HESS J1809-193. Conclusions. HESS has proven to be a suitable instrument for pulsar wind nebula searches. © ESO 2007.F. Aharonian... G. Rowell... et al

    Detection of VHE gamma-ray emission from the distant blazar 1ES 1101-232 with HESS and broadband characterisation

    Get PDF
    Context. The blazar 1ES 1101-232 was observed with the High Energy Stereoscopic System (HESS) of Atmospheric Cherenkov Telescopes (ACT) in 2004 and 2005, for a live time of 43 h. VHE (E > 10¹¹ eV) γ-rays were detected for the first time from this object. Aims. VHE observations of blazars are used to investigate the inner parts of the blazar jets, and also to study the extragalactic background light (EBL) in the near-infrared band. Methods. Observations in 2005 were conducted in a multiwavelength campaign, together with the RXTE satellite and optical observations. In 2004, simultaneous observations with XMM-Newton were obtained. Results. 1ES 1101-232 was detected with HESS with an excess of 649 photons, at a significance of 10σ. The measured VHE γ-ray flux amounts to dN/dE = (5.63 ± 0.89) × 10⁻¹³(E/TeV)⁻(²•⁹⁴±⁰•²⁰) cm⁻² s⁻¹ TeV−1, above a spectral energy threshold of 225 GeV. No significant variation of the VHE γ-ray flux on any time scale was found. 1ES 1101-232 exhibits a very hard spectrum, and at a redshift of z = 0.186, is the blazar with the highest confirmed redshift detected in VHE γ-rays so far. Conclusions. The data allow the construction of truly simultaneous spectral energy distributions of the source, from the optical to the VHE band. Using an EBL model with νFν = 14 nWm⁻² sr⁻¹ at 1.5 μm as presented in Aharonian et al. (2006a) suggests an intrinsic VHE power output peak of the source at above 3 TeV.F. Aharonian ... G. Rowell ... et al
    corecore