1,364 research outputs found

    Dynamic behavior and microstructural properties of cancellous bone

    Full text link
    The aim of the presented study is to identify some properties of the dynamic behavior of the cancellous bone and to identify the link between this mechanical behavior and the microstructural properties. 7 cylinders of bovine cancellous bone (diameter 41 mm, thickness 14 mm) were tested in quasi static loading (0.001 s-1), 8 in dynamic loading (1000 s-1) and 10 in dynamic loading (1500 s-1) with a confinement system. All the specimens were submitted to imaging before the tests (pQCT) in order to indentify two microstructural properties: Bone Volume / Total Volume ? BV/TV ? and Trabeculae Thickness ? Tb.Th. The behavior of bovine cancellous bone under compression exhibits a foam-type behavior over the whole range of strain rates explored in this study. The results show that for the quasi-static tests only the stresses are correlated with BV/TV. For the unconfined dynamic tests, the yield stress is correlated to BV/TV and the plateau stress to BV/TV and Tb.Th. For the confined tests, only the plateau stress is correlated to BV/TV and Tb.Th. The effect of strain rate is an increase of the yield stress and the plateau stress. The confinement has an effect on the measured values of compression stresses that confirms the importance of marrow flow in the overall behavior

    The effect of previous wingate performance using one body region on subsequent wingate performance using a different body region

    Get PDF
    The 30 second Wingate Anaerobic Test (WAnT) is the gold standard measure of anaerobic performance. The present investigation aimed to determine if a previous WAnT using one body region significantly affected a subsequent WAnT using a different body region. Twelve male university students (n = 12, 23 ± 2 years, 84 ± 16.1 kg, 178.5 ± 7.4 cm) volunteered to complete two repeated WAnT protocols (either lower body WAnT followed by an upper body WAnTor vice versa) on two separate testing occasions. The upper body WAnT was conducted on a modified electromagnetically braked cycle ergometer using a flywheel braking force corresponding to 5% bodyweight. The lower body WAnT was conducted on an electronically braked cycle ergometer using a flywheel braking force corresponding to 7.5% bodyweight. Participants had a 1 minute rest period for transition between WAnTs. Data are reported as mean ± standard deviation. No significant differences were identified in power indices for the lower body between 30 s WAnTs. When the upper body WAnT was performed 2nd, absolute peak power (p < 0.01), mean power (p < 0.001) and relative mean power (p < 0.001) were significantly lower compared to when the upper body WAnT was performed 1st. The value of maximum revolutions per minute was significantly lower (p < 0.001) when the upper body WAnT was performed after the lower body WAnT, compared to when it was performed 1st (193.3 ± 11.4 1st vs 179.8 ± 14.4 2nd). Previous upper body sprint exercise does not significantly affect lower body sprint exercise; however, previous lower body sprint exercise severely compromises subsequent upper body sprint performance

    Synchronization of a chaotic gyroscopic system under settling time constraints

    Get PDF
    A simple and easy-to-implement method that guarantees the effective active synchronization of a chaotic gyroscopic system within a specified settling time limit is presented. A closed-form expression is given for the determination of the appropriate synchronizing control signal. The method is successfully validated through simulations for various initial conditions of the gyroscopic system

    Correlations between cancellous bone architecture and its dynamic behaviour

    Get PDF
    Previous studies showed that in vivo evaluation of the fracture risk of cancellous bone can be assessed by identifying the relationships between its microarchitecture description extracted from clinical imaging and its mechanical properties. The mechanical properties under dynamic loadings (with and without confinement) were obtained and compared to quasi-static ones. The architectural parameters of each specimen were extracted from pQCT images and split into four groups: geometry, topology, connectivity and anisotropy. Results show that architectural parameters are strong determinants of mechanical behaviour for the different applied boundary conditions.http://icills2014.org/wp-content/uploads/2014/01/Marrianne-Prot.pd

    Optimal robust control of aeroelastic system vibrations

    Get PDF
    "A method for global and robust stabilization of aeroelastic wing vibrations based on optimal feedback control concepts is described in the present paper using Lyapunov stability theory. The method consists in decomposing the system model into a stabilizable linear part and a nonlinear part that satisfies sector-bound inequality; then a control law is designed to guarantee the global stabilization of the system and a specified robustness degree of the closed-loop dynamics. The validation of the method on aeroelastic wing section demonstrates better control performances over existing methods. The main contribution of the proposed method is that it allows one to design a linear controller that globally stabilizes a highly nonlinear system up to a specified degree of robustness without assuming any stability condition about the linear part, or matching conditions about the nonlinear uncertainties, contrarily to existing methods about optimal robust control

    Generating Time Optimal Trajectory from Predefined 4D waypoint Networks

    Get PDF
    The main purpose of this paper is to develop a trajectory optimization method to generate optimal trajectories that minimize aircraft total trip time between the initial and final waypoint in predefined 4D waypoint networks. In this paper, the 4D waypoint networks only consist of waypoints for climb, cruise and descent approach without the take-off and landing approach phases. The time optimal trajectory is generated for three different lengths of flights (short, medium, and long-haul flight) for two different commercial aircraft and considering zero wind condition. The Results about the presented applications show that by flying a time optimal trajectory, which was found by applying a single source shortest path algorithm (Dijkstra’s algorithm), can lead to the reduction of average travel time by 2.6% with respect to the total trip time.info:eu-repo/semantics/publishedVersio

    Optimal Robust Nonlinear LQG/LTR Control with Application to Longitudinal Flight Control

    Get PDF
    As part of the development of a new 4D Autopilot System for Unmanned Aerial Aircrafts (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path finding based on the aircraft’s own sensors data output, that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy Filter or the LQG/LTR, are available, the utter complexity of the new control system, together with the robustness and reliability required of such a system on an UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its performance. As such, a new nonlinear LQG/LTR algorithm, validated through computational simulation testing, is proposed on this paper. This research work was conducted in the Laboratory of Avionics and Control of the Department of Aerospace Sciences (DCA) at the Faculty of Engineering of the University of Beira Interior and supported by the Aeronautics and Astronautics Research Group (AeroG) of the Associated Laboratory for Energy, Transports and Aeronautics (LAETA).info:eu-repo/semantics/publishedVersio

    Nonlinear Time-varying Parameter Estimation from Noisy Measurements

    Get PDF
    Online parameter estimation for time-varying systems is a fundamental part of adaptive control, real-time system monitoring and prediction. A well-known framework for dealing with such a task is the Kalman filtering. Meanwhile Kalman filtering may be cumbersome for some time-critical systems and inappropriate for systems whose stochastic characteristics are not Gaussian. To overcome these shortcomings, a parameter estimation algorithm devised from Sutton’s dynamic learning rate techniques and based on a learning window and forgetting factor criterion has been used. In doing so, the proposed algorithm avoids the need for heuristic choices of the initial conditions and noise covariance matrices required by the Kalman filtering. The performance of the proposed method is demonstrated successfully on a lateral-directional flight dynamics parameter estimation process for an unmanned aerial vehicle through computational simulation.info:eu-repo/semantics/publishedVersio

    Spline parameterization based nonlinear trajectory optimization along 4D waypoints

    Get PDF
    Flight trajectory optimization has become an important factor not only to reduce the operational costs (e.g.,, fuel and time related costs) of the airliners but also to reduce the environmental impact (e.g.,, emissions, contrails and noise etc.) caused by the airliners. So far, these factors have been dealt with in the context of 2D and 3D trajectory optimization, which are no longer efficient. Presently, the 4D trajectory optimization is required in order to cope with the current air traffic management (ATM). This study deals with a cubic spline approximation method for solving 4D trajectory optimization problem (TOP). The state vector, its time derivative and control vector are parameterized using cubic spline interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into nonlinear programming problem (NLP). The proposed method is successfully applied to the generation of a minimum length optimal trajectories along 4D waypoints, where the method generated smooth 4D optimal trajectories with very accurate results.info:eu-repo/semantics/publishedVersio
    corecore