
Nonlinear Time-Varying Parameter Estimation from Noisy Measurements
Milca de Freitas Coelho;milca_coelho1@outlook.com
University of Beira Interior
K. Bousson - bousson@ubi.pt
LAETA-UBI/AeroG & Department of Aerospace Sciences, Laboratory of Avionics and Control, Faculty of Engineering University of Beira Interior
Kawser Ahmed - kawser.ah91@gmail.com
LAETA-UBI/AeroG & Department of Aerospace Sciences, Laboratory of Avionics and Control, Faculty of Engineering University of Beira Interior

Abstract
Online  parameter  estimation  for  time-varying  systems  is  a  fundamental  part  of  adaptive  control,  real-time  system
monitoring and prediction. A well-known framework for dealing with such a task is the Kalman filtering. Meanwhile Kalman
filtering may be cumbersome for some time-critical systems and inappropriate for systems whose stochastic characteristics
are not Gaussian. To overcome these shortcomings, a parameter estimation algorithm devised from Sutton’s dynamic
learning rate techniques and based on a learning window and forgetting factor criterion has been used. In doing so, the
proposed algorithm avoids the need for heuristic choices of the initial conditions and noise covariance matrices required by
the  Kalman filtering.  The performance of  the  proposed method is  demonstrated successfully  on  a  lateral-directional  flight
dynamics parameter estimation process for an unmanned aerial vehicle through computational simulation.
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Nonlinear Time-Varying Parameter Estimation 
from Noisy Measurements  

 

1 Introduction 

 
Parameter estimation is one of the fundamental tools for dealing with time-varying systems, 
mainly in system control, filtering, identification and prediction. For instance, in aerospace 
industries, due to the limitation in the size of wind tunnels and to the size of the aircraft 
prototypes to be used in these wind tunnels, aerodynamic parameters may be estimated from 
flight testing data [3]. It is more appropriate to estimate these parameters along with the 
acquisition of the necessary data during flight tests instead of doing it off-line as is often 
done. The interest of estimating dynamical system parameters on-line is manifold. For 
instance, the control strategy may be improved by the possibility of using the estimated 
parameters for predicting some state or output variables, adapting the control parameters 
according to these predictions, or estimating the performances of the underlying dynamic 
system so that they can be improved efficiently.  
 
There are two main groups of methods for coping with parameter identification: the gradient 
descent and the Kalman filtering based methods [1,4]. Meanwhile, the work of Sutton [8,9] 
with linear networks sheds the light on the relationship between these two groups, and it can 
be shown that the problem of sequentially updating the learning rates in gradient descent 
algorithms and that of updating the system and process noise covariance matrices in Kalman 
filtering are equivalent. However, it is known that the application of the Kalman filtering 
algorithm may be inefficient if the stochastic behavior of the system is not well understood, 
mainly if the noise covariance matrices are wrongly chosen. Therefore, Sutton [9] has 
proposed a gradient descent method for updating the Kalman gain, which is void of any 
special prior knowledge of the process noise covariance matrix, and at the same time 
reducing the computational time and increasing the efficiency of the filtering process. 
 
The present paper extends Sutton’s filtering algorithm to the case of nonlinear systems with 
parameters that are possibly time-varying. For such systems, one of the approaches is to 
estimate the model parameters at time t, taking into account only the last L measurements 
on the system, iterating from the value of the parameter at t-1. In the context of incremental 
least square methods, Bertsekas [2] has given a solution to a problem which is equivalent to 
the one we intend to solve, but from the standpoint of the Kalman filtering. The purpose of 
the present paper is to propose a solution based on the nonlinear extension to the Sutton 
linear filtering approach keeping its advantages over the Kalman filtering, and to give an 
application to the estimation of aircraft aerodynamic parameters during flight tests. 
 

2 Problem Statement 

 
In the discrete-time domain, the system model may be represented by the equation: 
 

 kkkk vxy  ),(   (1) 

 

where xk, yk, k, and vk are respectively the model input, the model output, the model 

parameter, and the white noise at discrete time k, and  being a nonlinear function of its 

arguments. The model parameter k will be referred to as the parameter vector in the 
sequel.  
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It is assumed that there are means to measure the output vector ky  on-line for any setting of 

the input vector kx   across time. The measurements are taken according to a certain time-

period t at times: 
 

...,....,,.2,, 002010 tnttttttttt n   

 
The problem to be solved in the present paper is to find the parameter vector on-line at each 

discrete time ti ),1( i  along with the data acquisition process on the system, such that the 

predictions across-time of the output vector be as close as possible to its corresponding 
actual measurements.  
 

3 Solution Proposal 

 

In the case of linear time-invariant systems, the parameter k is constant (k = ), and the 
cost function which is usually adopted for identifying that parameter with measurements up 
to time t is of least square type: 
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Furthermore, in the linear case, (Eq. 1) is expressed as: 
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where (.)T is the transposition operation. In its simplest form, the gradient descent algorithm 
for updating the parameter vector  is expressed by the following equation: 
 

 
kk
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kkkk xxy )ˆ(ˆˆ
1    (4) 

 

where k̂  denote the estimates of k and   a constant learning rate. To improve that 

scheme it is better to associate a variable learning rate with each component of the 
parameter vector as done for instance by Sutton [8,9]: 
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where the upper script (i) indicates the ith component of the corresponding variable. It is 
clear that the Kalman filtering algorithm is also an example of a variable learning rate 
algorithm with: 
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where Pk and Qk are respectively the update matrix and the noise covariance matrix, and 
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Due to the complexity encountered in the applications of the Kalman filtering when 
probabilistic knowledge about the system is not available, Sutton devised filtering techniques 
[8,9], for linear time-invariant systems, which are void of probabilistic information, and 
which have performances comparable to those of the Kalman filtering methods.  Sutton 
filtering techniques consist in approximating matrix P+Q in (Eq. 6) with a diagonal matrix 
whose ith diagonal element is given by: 
 

 )exp( )(iiip   (7) 

 

where (i) is updated by the least mean square rule devised such that the learning rate for 
each model parameter is updated sequentially. The Sutton filtering algorithm is dedicated to 
linear time-invariant systems, that is, systems satisfying (Eq. 3). In the context of nonlinear 
time-varying systems, the cost function to be minimized is no longer given by (Eq. 2) but by a 
functional which accounts for the variability of the parameter across time. Assuming the 
parameter variation to be smooth, it can be shown that the minimization of the following 
time-dependent cost function allows to track the parameter [2]: 
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where t is the current time, Ht is a time-varying positive definite matrix, L is the learning 

window length, and  is a scalar forgetting factor with: 
 

 10    (9) 

 
The nonlinear counterpart of the Sutton’s filtering may be based on the linearization of (Eq. 

1) about the current estimate k̂  of the parameter vector assuming function   to be 

derivable with respect to its second argument (the parameter vector). Therefore, with 
respect to the criterion stated in (Eq. 8), the extension of the Sutton’s filtering technique 
[8,9] to nonlinear time-varying systems gives: 
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where ty  is the measurement vector at t, ),(ˆ
ttt xy   the measurement estimate, 

),( ttx   is the gradient of ),( tx  with respect to   at ,t  and Pt is defined as a 

diagonal matrix whose ith diagonal element is given by (Eq. 7) for t = 1, ..., L, with for each i 
and t: 
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where  is a small positive parameter, t  is the error: ),,( tttt xy    ),()(

tt

i x   is 

the ith component of the gradient ),( ttx  , and 
)(i

th  is defined as: 
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with 
)(i

tK  being the ith component of ,tK  and (a)+ the positive part of the real a, that is: 

).,0( amaxa 
 

 

4 Numerical Application 

 
Consideration is given here to an application to stability and control derivative estimation in a 
lateral-directional flight [3,6,7]. The angle of attack is assumed to be nearly equal to zero, 
and the altitude may suffer some low frequency and low amplitude oscillations about a given 
constant value. With respect to a moving flat earth (assumed) and non-rotating reference 
frame translating with the local air mass, the equations describing the dynamics of an aircraft 
in the horizontal plane, when the aircraft is seen as a rigid body with no idle thrust, can be 
written as follows [5]: 
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where  ly CC ,  and nC  are respectively the side-force coefficient, rolling moment coefficient 

and yawing moment coefficient, and defined as: 
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 (18) 

 
For a lateral-directional flight with constant altitude and nearly zero pitch angle, the Euler 
attitude dynamics equations reduce to the following simple equations: 
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Nomenclature 
 

V  :   aircraft speed, T :  thrust, 

 : yaw angle,   :  bank angle, 

h  : flight altitude,  )(h  : air density at altitude h , 

S : wing reference area, m : aircraft mass, 

g : acceleration of the gravity, p, q, r : roll rate, pitch rate, yaw rate, 

D :  drag,  :  sideslip angle, 
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,,,,,,,
: stability and control derivatives 

c  : mean chord length, 

b : wing span, 

Ix,Iy,Iz : moment of inertia about the longitudinal, lateral and vertical axes of the aircraft, 

Ixz : product of inertia in the (x,z)-plane, 

       : time constant of the propulsion system (when the throttle is activated), this            

parameter depends on the altitude h, the aircraft speed V, and the position of the throttle . 

 : position of the throttle expressed as a number in interval [0, 1], 

Tmax : maximal thrust available, 

 : specific fuel consumption. 
 

The air density (h) at altitude h is given as:  

 

 

5 4.256060537
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0.2971 exp 0.0001576939(11000 ) , 11000 20000

h if h m
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 (21) 

where ./225.1 3

0 mkg  

 
The state, control and parameter vectors of the aforementioned model are given respectively 
by (Eq. 22, 23, 24) below: 
 

   Tx p r V T m   (22) 

   T

rau   (23) 
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where [.]T denotes the vector transposition operator. So, the system of equations (Eq. 17, 19, 
20) can be written as: 
 

 ( , , ) noisex f x u    (25) 

 

The problem here consists in estimating the parameter vector   as defined in (Eq. 24). 

 
The experiments have been done with an unmanned aerial vehicle (UAV) model. The data 
related to the specific model used for the application of the method are: 
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The initial conditions used for the simulation are:  
 

0

0 0 0 0 0 0 0 00 , 0, 38 / , 820 , 55 .p r V m s T N m kg           

 
The model equation (Eq. 25) has been simulated (in the mean-square sense, assuming zero-
mean noise) using the modified Euler scheme described below (or any other numerical 

integration scheme) where t denotes the integration stepsize: 
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It is obvious that the expression  1 1
ˆ ˆ ˆ( 2).n n n nx x t y y      that appears in (Eq. 26) may 

be written as an equivalent equation that has the form of (Eq. 1).  
 
The integration step size for the simulation has been taken constant and equal to 

001.0t second. Disturbances in the rudder and the ailerons were applied to a known 

nonlinear model (hence, the stability derivatives were all known) to produce simulated data 
for the state responses of the aircraft. These data were then corrupted with 10% Gaussian 
random noise, which made the signal-to-noise ratio 10-to-1 for each simulated state 
measurement, but the ailerons and rudder input were assumed to be noise-free, which is 
close to reality. Based on these generated data, the identification of the stability derivatives 
were done from the simulation of the same aircraft model with the same rudder and ailerons 
disturbances and assuming the stability derivatives to be unknown. The window length L used 

in (Eq. 8) for the parameter estimation has been set to ,20L  which means that the 

current parameter estimate is based on the last twenty measurements.  The estimates of 
each stability derivative were computed along one-hour flight simulation and compared with 
the actual values. Table 1 below summarizes the root mean square errors (rmse) obtained 
from these comparisons for all the considered stability derivatives during a flight that lasted 
300 seconds (6 minutes) using the 3-2-1-1 input forms. One may observe that the proposed 
method is actually an accurate nonlinear parametric estimator. 
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Table 1: Root mean square error for the stability and control derivatives identification 

 

PARAMETERS RMSE 

Cy 0.00022 

Cya 0.00017 

Cyr 0.00018 

Cl 0.00127 

Clp 0.00012 

Clr 0.00101 

Cla 0.00009 

Clr 0.00001 

Cn 0.00103 

Cnp 0.00009 

Cnr 0.00005 

Cna 0.00010 

Cnr 0.00008 

 

5 Conclusion 

 
A method for online parameter estimation is presented for nonlinear time-varying uncertain 
systems for which the stochastic characteristics of the uncertainties are not known. An 
adaptive estimation procedure with variable learning rate is proposed and applied 
successfully on real-time stability and control derivative determination. Because the method 
is void of prior stochastic information about the model uncertainties and measurement noise, 
it may well be an alternative to existing nonlinear (and linear) recursive parameter 
estimation methods mainly when information about uncertainties related to the model and 
the measurements is unavailable. Future work will investigate the extension of the proposed 
method to nonlinear adaptive control of uncertain systems. 
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