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Abstract – The main purpose of this paper is to develop a trajectory optimization method to 
generate optimal trajectories that minimize aircraft total trip time between the initial and final 
waypoint in predefined 4D waypoint networks. In this paper, the 4D waypoint networks only 
consist of waypoints for climb, cruise and descent approach without the take-off and landing 
approach phases. The time optimal trajectory is generated for three different lengths of flights 
(short, medium, and long-haul flight) for two different commercial aircraft and considering zero 
wind condition. The Results about the presented applications show that by flying a time optimal 
trajectory, which was found by applying a single source shortest path algorithm (Dijkstra’s 
algorithm), can lead to the reduction of average travel time by 2.6% with respect to the total trip 
time. Copyright © 2017 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
a  Acceleration 
a  Earth semi major axis 

LC  Lift coefficient 
d  Travel time between waypoints 
e  Eccentricity  
G,w,s  Graph, weight, and source vertex 
P  Waypoint 

eR  Earth radius  
S  Wing area  
V  Flight velocity 
V,E  Vertices and edge of the graph 

TASV  True air speed 
W  Aircraft Nominal weight 
X ,Y ,Z  Geocentric Coordinates 

, ,h   Longitude, Latitude, and altitude 
  Arrival time tolerance interval 
  Flight path angle  
  Air density  
  Arrival time at waypoint 
  Heading 

d  Distance between waypoints 

I. Introduction 
The air traffic load on the European air traffic network 

grows year upon year, the volume of air traffic is 
expected to double over the next 20 years.  

Hence developing optimal trajectory that minimizes 
travel time on flight mission for commercial aircraft 
becomes an important factor nowadays not only because 
it helps the airlines to reduce their time related operating 

 
costs but also as it enhances air traffic flow in this rapidly 
growing aviation industry. 

A practical solution that reduces the cost associated 
with time and fuel consumption during flight is the Cost 
Index (CI). The value of the CI reflects the relative 
effects of fuel cost on overall trip cost as compared to 
time-related direct operating cost. For all the aircraft 
models, the minimum value of cost index equal to zero 
results in maximum range airspeed and minimum trip 
fuel, but this configuration ignores the time cost. If the 
cost index is maximum, the flight time is minimum, the 
velocity and the Mach number are maximum, but ignores 
the fuel cost [1]. In this paper, the Cost Index assumes to 
be maximum as only time cost is taken into 
consideration. The cost index is shown in equation (1): 

 
 
 
€/hour
€/kg

TimeCost ~
CI

FuelCost ~
  (1)

 
Trajectory optimization is a vital area in aeronautic 

industry. This technique enables generating optimal 
trajectories for vehicles with consideration of fuel 
consumption, travel time and many other requirements.  
The trajectory optimization problem can be solved by 
optimal control methods. The optimal control problem 
can be solved by various kind of methods, however, 
these methods can be separated into two basic 
approaches: the indirect approach and the direct approach 
[2], [3]. 

The optimal control is solved by the Pontryagin 
maximum principle [4] in indirect approach, where the 
original optimal control problem is converted into Euler-
Lagrange system (boundary value problem) by 
formulating the first order necessary condition which 
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derived from Pontryagin maximum principle. Generally, 
the indirect approach leads to more accurate results than 
the direct approach. However, in indirect approach a 
good initial approximation of the co-state equation is 
needed in order to convergence, the physical meaning of 
co-state equation is not well established which make it 
difficult to guess [5]. Solving the optimal control 
problem by indirect approach also leads to two-point 
boundary value problem (TPBVPs), it demands 
computationally intensive iterative numerical procedures. 

The direct approach is based on the transformation of 
optimal control problem into parameter optimization 
problem [6]. Which is done by discretizing the infinite 
dimensional problem into a finite dimensional problem 
and later on solving it by the nonlinear programming. 
Direct methods tend to have better convergence 
properties over indirect methods. Another great 
advantage of direct methods is that they do not have to 
deal with co-state equation. The most known direct 
approaches are based on Runge-Kutta scheme [7] and 
collocation methods [8]. Recently, some works have been 
presented for higher nonlinear dynamic system called a 
Chebyshev pseudo-spectral method [9], [10], [11]. 

Some research activities have been done for optimal 
trajectory generation in pre-defined network. Recently 
Boukraa, Bestaoui and Azouz [12] propose 3D optimal 
trim trajectories planner algorithm to generate 
trajectories for a set of predefined waypoints in space. 
However, the arrival time of each of these waypoints is 
not specified in their trajectory model. Bousson and 
Gameiro [13] present a quintic spline approach for 4D 
trajectory generation for UAVs. Devika and Thomas [14] 
present a path planning algorithm based on linear 
programming is adopted to ensure conflict free path in 
minimum time. 

In this present paper, we suggest a new approach to 
generate 4D optimal trajectory defined by waypoints. In 
4D trajectory the waypoints are consist of tri-dimensional 
coordinates as well as the arrival time in each waypoint. 
In this approach, the optimal trajectory is generated by 
applying greedy shortest path algorithms in graph theory, 
where the 4D waypoint networks are already pre-
specified. The shortest path algorithm approximates an 
optimal trajectory by the path that minimizes the total 
link cost connecting the origin and destination in a pre-
defined network. This approach often require large 
computation time and memory space as the network 
grows bigger but the global optimal solutions is 
guaranteed to be found. In this paper, the single source 
shortest path algorithm (Dijkstra’s algorithm) is used to 
generate the time optimal trajectory. 

This study is restricted to the climb, cruise and descent 
phases of the flight and ignores the take-off and landing 
approach, and assuming the initial and final waypoints 
are at altitude of 3000 feet, where in the initial waypoint 
the aircraft begins the climb phase and in the final 
waypoint the aircraft begins the landing approach. 

This paper primarily attempts to quantify benefits of 
time optimal trajectory which was generated by implying 

the Dijkstra’s shortest path algorithm, here a benefit is 
meant to imply a reduction in total travel time due to 
using the Dijkstra’s shortest path algorithm to the actual 
unimproved flight. The key aspect of this paper is a 
detailed comparison between actual flight trajectories 
and corresponding more efficient trajectory, thus giving 
the most realistic estimate of improvement potential. 

II. Problem Statement 
The main goal of this paper is to find a time optimal 

path from predefined 4D waypoint networks. A 
representation of waypoint networks is shown in Fig. 1, 
where 1P  is the initial waypoint and NP  is the final 
waypoint of the networks. 

 

 
 

Fig. 1. Representation of 4D waypoint networks 
 

Most of the approaches consider the waypoints 
defined by tri-dimensional coordinates positions as: 

 Tk k k kP , ,h  , where 1 2k , ,...,i, j ,...,N  and do not 
take into account the arrival time k  at that waypoint. By 
adding the arrival time restriction, it is possible to define 
the 4D waypoints as:  Tk k k k kP , ,h ,   . Where: 

k k k k, ,h ,    is respectively longitude, latitude, altitude, 
and arrival time at waypoint kP . 

The problem to be solved is to estimate associated 
travel time kd  between the waypoints in 4D waypoint 
networks, then to use the value of associated travel time 

kd  between pair of waypoints as edges E and the 
waypoints as vertices V in Dijkstra’s single source 
shortest path algorithm to generate the time optimal 
trajectory between the initial and final waypoints from 
the networks. 

The following section propose a method that will 
generate the time optimal path along specified waypoints 
from predefined 4D waypoint networks by implying the 
Dijkstra’s single source shortest path algorithm. 

III. Proposed Method 
To generate an optimal trajectory which minimizes 

travel time between the initial and final waypoints from a 
set of waypoints in 4D waypoint networks requires 
finding the associated travel time kd  by the aircraft to 
go from one waypoint to the other, defined as: 

 
1k k kd      (2)
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where, kd  [min] is the travel time needed to go from 
waypoints 1kP   to kP , k [min] is the travel time required 
to get to waypoint kP  from initial waypoint and 1k   
[min] is the travel time required to get to waypoint 

1kP  from initial waypoint. 
In practice, the aircraft may not pass through the 

waypoint kP  exactly at the specified time k  due to 
disturbances that may give rise to navigation 
inaccuracies. Therefore, an appropriate way is rather 
imposing a time tolerance interval   at each waypoint: 

 
1k k kd       (3)

 
where,   is the time tolerance interval for arrival at a 
determined waypoint  1 1 4.  . In the case when both 
waypoints 1kP   and kP  are at same altitude, the time 
tolerance interval   can be assumed as 1. 

III.1. Dijkstra’s Algorithm 

Dijkstra's algorithm, was first proposed by Dutch 
computer scientist Edsger Dijkstra in 1956 and published 
in 1959, is the most well-known shortest path algorithm. 
This is a graph search algorithm that solves the single-
source shortest path problem for a graph with non-
negative edge path costs, producing a shortest path tree. 
The most common variant of the algorithm fixes one 
vertex as the source and another as the destination vertex 
and find the shortest path between them. 

Dijkstra’s algorithm solves the single-source shortest-
paths problem on a weighted, directed graph G (V, E) 
where V is a set of vertices and E is a set of edges on the 
graph. This algorithm requires 3 variables as input in 
order to finds the path with lowest cost between the 
source and destination vertices, they are respectively the 
graph, the source vertex, and the destination vertex, and 
at the end it returns a reduced graph as output. 

This algorithm will determine the global optimal (best 
route to take), given a number of vertices and edges as 
long as it has the graph as an input, no matter how large 
the graph is. 

In addition to the basic formulation of the Dijkstra’s 
algorithm, the following aspects must be defined 
specifically for the flight trajectory optimization 
problem. The number of vertices V, the edges E between 
the vertices and the source and destination vertices. In 
this paper, the waypoints of the 4D waypoint networks 
are the vertices V, the initial waypoint is the source 
vertex s, the final waypoint is the destination vertex and 
the associated travel time kd  by the aircraft between the 
pairs of waypoints are the edges E between these vertices 
(waypoints). 

In Figs. 2 a full execution of the Dijkstra’s shortest 
path algorithm operation is shown. The circles represent 
the vertices or nodes and the lines with arrows are the 
edges.  

 
 

Figs. 2. The execution of Dijkstra's algorithm 
 

Each edge has a non-negative cost associated with it. 
The problem is to find the most cost-efficient route from 
the source vertex to any other vertex. 

In this example, the source vertex s is the leftmost 
vertex. The value with low cost estimates appear within 
the vertices, and shaded edges indicate predecessor 
values. Black vertices are already examined thus they 
have the value of lowest cost associated with them to go 
from the source vertex, and the white vertices are going 
to be examined. First step (a) shows the situation just 
before the first iteration of the while loop. Form step (b) 
to step (f) shows the situation after each successive 
iteration of the while loop. The value of lowest cost and 
predecessors shown in last step (f), and these are the final 
values of the lowest cost to go to that vertex from the 
source vertex [15], [16], [17]. 

III.2. Modelling of 4D Waypoint Network 

Assuming the 4D waypoint networks consists of N 
sets of waypoints, where 1P  is the initial waypoint and 

NP  is the final waypoint in the waypoint networks. Each 
waypoint kP , where 1 2k , ,...,i, j ,...,N  is defined by the 
geodetic coordinates k k k, ,h  , by considering the 
arrival time in each waypoint, the waypoint kP  can be 
described as a four-dimensional state vector: 

 

 Tk k k k kP , ,h ,    (4)
 

where, k  is the longitude, k  is the latitude, kh  is the 
altitude (with respect to sea level) and k  is the 
scheduled arrival time at waypoint kP . The following 
subsections represent the navigation model and 
constraints of 4D waypoint networks. 

III.2.1. Navigation Model 

The following differential equations model the 
dynamics of the navigation process: 

 

 e

V cos sin
R h cos

 






  (5)
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 e

V cos cos
R h
 

 


  (6)

 
h V sin  (7)

 
1V u  (8)

 
2u   (9)

 
3u   (10)

 
where, V is the flight velocity,   is the flight path angle, 
  is the heading (with respect to the geographical 
north),   is the longitude,   is the latitude, h  is the 
altitude (with respect to sea level) and eR is the Earth 
radius. 

The variables 1u , 2u  and 3u  are respectively the 
acceleration, the flight path angle rate, and the heading 
rate. The state vector x  and control vector u  of the 
above model are described respectively as: 

 
 Tx , ,h,V , ,     (11)

 

 1 2 3
Tu u u ,u,  (12)

III.2.2. Navigation Constraints 

The real-world flight operates under several 
constraints, due to aircraft performance, aerodynamic, 
structural limits, safety reasons, the mission and other 
factor, which is described as: 

 
min maxa   a a   (13)

 
min max      (14)

 
min maxV   V V   (15)

 
These bound constraints are imposed on the state and 

control vectors. 

III.3. Arrival Time at Each Waypoint 

The 4D navigation consists of traveling through a 
sequence of predefined waypoints in a given time of 
flight, which in turn define the trajectory of the flight. 
Assuming that the waypoint kP  is already defined by the 
geodetic coordinates longitude k , latitude k , and 
altitude kh , where the scheduled time of arrival k  at 
this waypoint is unknown. To compute this unknown 
arrival time of each waypoint, the distance between this 
waypoint and its previous waypoint from where the 

aircraft is arriving and the average velocity of the aircraft 
between these two waypoints are required. 

The trajectory generation requires a geocentric 
coordinates system. To calculate the distance between 
two waypoints, the tri-dimensional waypoints need to be 
transformed from usual geodetic coordinates system to 
geocentric coordinates system. The 3D waypoint kP  is 
defined by the following way: 

 

 Tk k k kP , ,h   (16)
 
Now to transform these geodetic coordinates to 

geocentric coordinates, the following equations are 
required [18]: 

 
 k k k k kX N h cos cos    (17)

 
 k k k k kY N h cos sin    (18)

 

 21k k k kZ N e h sin      (19)

 
Being a  is the Earth semi major axis and e  its 

eccentricity, kN  can be calculated as follows: 
 

2 2

a

1
k

k

N
e sin 




 (20)

 
After transforming the 3D waypoints from geodetic 

coordinates to geocentric coordinates system, now it is 
possible to calculate kd  (the distance between two 
waypoints 1kP   and kP ) by using the following equation: 

 

     2 2 2
1 1 1k k k k k k kd X X Y Y Z Z         (21)

 
To estimate the appropriate velocity of the aircraft kV  

at any waypoint kP , the following equation can be used: 
 

2
k

k L

WV
C S

  (22)

 
where, W is the aircraft nominal weight, LC is the lift 
coefficient, S  is the wing area of the aircraft and k  is 
the air density (varies with altitude) at waypoint kP . It is 
possible to get the appropriate velocity at any waypoint 

kP  from Base of Aircraft Data (BADA), where true air 
speed, VTAS [kt] is specified for different aircraft for 
different flight level and phases of the flights [19]. 

By using the distance between two waypoints and the 
velocity of the aircraft in both waypoints the travel time 
between these two waypoints can be computed as follow: 
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1

2

k
k

k k

d
d V V







 

(23)

 
where, kd is the time needed to go from waypoint 1kP   
to kP . 

IV. Simulation and Result 
In this section, the simulation and result of the time 

optimal trajectory is shown for three different length 
(short, medium, and long-haul) of flight considering zero 
wind conditions. All the analysis of the simulation has 
been done using Matlab 2013a. The coordinates of the 
trajectory were chosen using sky vector website [20]. 

IV.1. Short-Haul Flight 

In order to analyze the short-haul flight, the flight 
from Lisbon to Geneva was considered. The 4D 
waypoint networks of this short-haul flight consists of 
two different trajectories, and has total 22 waypoints 
including the initial and final waypoints, and each 
trajectory has 12 waypoints including the initial and final 
waypoints. Airplane A1 (which is a short to medium 
range narrow body twinjet airliner) was used to analyze 
the flight trajectories. Tables I and II show the waypoints 
lists for both of the trajectories. Each waypoint is defined 
in geodetic coordinates  , , h  , and their associated 
distance travel time kd  between the waypoints are also 
shown. 

The trajectories were chosen such a way that the climb 
and descent phases of the first trajectory are smaller than 
the second trajectory but the cruise phase of the first 
trajectory is bigger than the second trajectory, therefore 
the total distance from the initial to final waypoint for 
both of the trajectories are more or less same. The time 
optimal trajectory was generated from the 4D waypoint 
networks by using the Dijkstra’s single source shortest 
path algorithm. 

 
TABLE I 

LIST OF WAYPOINTS IN 1ST TRAJECTORY FOR SHORT-HAUL FLIGHT 

waypoint   
[deg] 

  
[deg] 

h  
[feet] 

kd  
[min] 

Initial (P1) -9.0405 38.9955 3000 0 
P2 -8.9083 39.1087 10000 2.371751 
P3 -8.624 39.33417 20000 3.437191 
P4 -7.7987 39.8783 33000 7.295251 
P5 -6.9993 40.2513 39000 5.748997 
P6 -3.3707 43.227 39000 32.48854 
P7 0.1303 44.729 39000 23.71969 

waypoint   
[deg] 

  
[deg] 

h  
[feet] 

kd  
[min] 

P8 3.5963 44.9543 39000 19.97808 
P9 3.87217 45.1205 33000 2.058735 
P10 4.6985 45.41983 20000 5.71202 
P11 5.336 45.606 10000 5.275779 

Final (P22) 5.7553 45.884 3000 5.618537 
Total    113.7046 

TABLE II 
LIST OF WAYPOINTS IN 2ND TRAJECTORY FOR SHORT-HAUL FLIGHT 

waypoint   
[deg] 

  
[deg] 

h  
[feet] 

kd  
[min] 

Initial (P1) -9.0405 38.9955 3000 0 
P12 -8.835 39.0883 10000 2.862798 
P13 -8.49983 39.30183 20000 3.66612 
P14 -7.59217 39.7763 33000 7.374258 
P15 -6.715 40.11317 39000 6.036433 
P16 -1.765 41.631 39000 32.6647 
P17 0.5565 43.9993 39000 23.55432 
P18 3.6277 44.85317 39000 19.04446 
P19 3.9993 44.9983 33000 2.415762 
P20 4.8617 45.261 20000 5.787862 
P21 5.4975 45.5203 10000 5.625951 

Final (P22) 5.7553 45.884 3000 5.642634 
Total    114.6753 

 
The time optimal trajectory contains 10 waypoints 

[initial waypoint (P1) → P2→ P3→ P4→ P5→ P8→ P9→ 
P10→ P11→ final waypoint (P22)], the distance between 
the initial and final waypoints in the time optimal 
trajectory is 777.8 nm. The comparison of travel time in 
different phases of flight for those two trajectories and 
time optimal trajectory is shown in (Table III). 

 
TABLE III 

TOTAL TIME NEEDED IN DIFFERENT TRAJECTORIES  
FOR SHORT-HAUL FLIGHT 

Trajectory Time [min] Total 
[min] Climb Cruise Descent 

1 18.9 76.2 18.7 113.7 
2 19.9 75.3 19.5 114.7 

Time optimal 18.9 73.49 18.7 111.01 
 

As it is seen from Table III that by using the time 
optimal trajectory in short-haul flight (Lisbon – Geneva), 
the aircraft reaches the final waypoint 2.7 minutes faster 
than the first trajectory, which is equivalent to 2.4% of 
total travel time of the first trajectory and 3.7 minutes 
faster than the second trajectory equivalent to 3.2% of 
total travel time of the second trajectory. The time 
optimal trajectory of short-haul flight is shown in Fig. 3. 

In Fig. 3 the blue curve line represents the real 
trajectory path through different waypoints, starting on 
the right. The red circles around the blue line denote the 
position of the waypoints associated with the trajectory. 

 

 
 

Fig. 3. 3D time optimal trajectory in geocentric coordinates  
for short-haul flight 

IV.2. Medium-Haul Flight 

To analyze the medium-haul flight, the flight from 
Lisbon to Stockholm was considered.  
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There are also two trajectories between the initial and 
final waypoints in the 4D waypoint networks, each 
trajectory has total 13 waypoints including the initial and 
final waypoints, and total 24 waypoints are there in the 
4D networks including the initial and final waypoint. 
Airplane A2 (which is a long range wide body twinjet 
airliner) was used to analyze the flight trajectories.  

Tables IV and V show the waypoints lists for both 
trajectories. 

 
TABLE IV 

LIST OF WAYPOINTS IN 1ST TRAJECTORY  
FOR THE MEDIUM-HAUL FLIGHT 

waypoint   
[deg] 

  
[deg] 

h  
[feet] 

kd  
[min] 

Initial (P1) -9.0405 38.9955 3000 0 
P2 -8.9373 39.1525 10000 2.665515 
P3 -8.643 39.6385 24000 5.529098 
P4 -8.0007 40.5407 37000 8.291856 
P5 -7.7847 40.942 41000 3.243938 
P6 -4.752 46.1707 41000 42.43539 
P7 1.07817 49.6497 41000 39.21055 
P8 9.07617 53.515 41000 47.18143 
P9 14.4575 57.839 41000 39.59531 
P10 14.75417 58.0005 37000 1.695762 
P11 15.78983 58.624 24000 6.807662 
P12 17.0113 59.2063 10000 9.043191 

Final (P24) 17.73983 59.3445 3000 5.538229 
Total    211.2379 

 
TABLE V 

LIST OF WAYPOINTS IN 2ND TRAJECTORY  
FOR THE MEDIUM-HAUL FLIGHT 

waypoint   
[deg] 

  
[deg] 

h  
[feet] 

kd  
[min] 

Initial (P1) -9.0405 38.9955 3000 0 
P13 -8.8405 39.1047 10000 2.874146 
P14 -8.455 39.576 24000 5.748028 
P15 -7.808 40.4545 37000 8.141368 
P16 -7.413 40.8377 41000 3.642769 
P17 -0.2773 44.76 41000 49.00066 

waypoint   
[deg] 

  
[deg] 

h  
[feet] 

kd  
[min] 

P18 4.6187 50.023 41000 46.56667 
P19 10.92483 54.85883 41000 46.27695 
P20 15.0405 57.2845 41000 25.06379 
P21 15.39 57.4757 37000 2.016462 
P22 16.496 58.17 24000 7.488843 
P23 17.504 58.94117 10000 9.827318 

Final (P24) 17.73983 59.3445 3000 5.864875 
Total    212.5119 
 
The time optimal trajectory for the flight between 

Lisbon and Stockholm (medium-haul flight) contains 9 
waypoints [initial waypoint (P1) → P2→ P3→ P4→ P5→ 
P9→ P10→ P12→ final waypoint (P24)], the distance 
between the initial and final waypoints in time optimal 
trajectory is 1589.6 nm.  

The comparison of travel time in different phases of 
the flight for those two trajectories and the time optimal 
trajectory is shown in Table VI. 

It can be seen from Table VI that by flying the time 
optimal trajectory in medium-haul flight (Lisbon – 
Stockholm) 4.2 minutes can be saved than the first 
trajectory, which is equivalent to 1.9% of total travel 
time of the first trajectory and 5.5 minutes can be saved 

than the second trajectory, which is equivalent to 2.6% of 
total travel time of the second trajectory. The time 
optimal trajectory is shown in Fig. 4. 

In Fig. 4 the blue curved line is the time optimal 
trajectory path and the red circles around it are the 
associated waypoints of the time optimal trajectory. 

 
TABLE VI 

TOTAL TIME NEEDED IN DIFFERENT TRAJECTORIES  
FOR MEDIUM-HAUL FLIGHT 

Trajectory Time [min] Total 
[min] Climb Cruise Descent 

1 19.7 168.4 23.1 211.2 
2 20.4 166.9 25.2 212.5 

Time optimal 19.7 164.3 23.04 207.04 
 

 
 

Fig. 4. 3D time optimal trajectory in geocentric coordinates  
for medium-haul flight 

IV.3. Long-Haul Flight 

The flight from Lisbon to Montreal was considered in 
order to analyze the long-haul flight.  

The 4D waypoint networks of the long-haul flight also 
consists of two trajectories between the initial and final 
waypoints, each trajectory has 14 waypoints including 
the initial and final waypoints, and total 26 waypoints are 
in the whole 4D waypoint networks including initial and 
final waypoints.  

Airplane A2 (which is a long range wide body twinjet 
airliner) was used to analyze the flight trajectories. The 
waypoints list of both trajectories is shown in Table VII 
and VIII. 

 
TABLE VII 

LIST OF WAYPOINTS IN 1ST TRAJECTORY  
FOR THE LONG-HAUL FLIGHT 

waypoint   
[deg] 

  
[deg] 

h  
[feet] 

kd  
[min] 

Initial (P1) -9.0405 38.9955 3000 0 
P2 -9.22083 39.1 10000 2.64759 
P3 -9.8425 39.3857 24000 5.780186 
P4 -10.9352 39.9543 37000 8.209056 
P5 -11.74 40.32817 43000 5.40015 
P6 -22.5022 43.5023 43000 64.53132 
P7 -35.132 44.73617 43000 68.56969 
P8 -44.9847 47.4295 43000 55.05948 
P9 -58.667 48.5647 43000 69.12781 
P10 -70.3565 46.4947 43000 61.15854 
P11 -70.809 46.4135 37000 2.421801 
P12 -71.9328 46.21 24000 6.6038 
P13 -73.0908 45.9335 10000 8.948898 

Final (P26) -73.6412 45.7947 3000 5.680405 
Total    364.1387 
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TABLE VIII 
LIST OF WAYPOINTS IN 2ND TRAJECTORY  

FOR THE LONG-HAUL FLIGHT 

waypoint   
[deg] 

  
[deg] 

h  
[feet] 

kd  
[min] 

Initial (P1) -9.0405 38.9955 3000 0 
P14 -9.2387 39.05683 10000 2.514717 
P15 -9.94583 39.2603 24000 6.040968 
P16 -11.2588 39.4515 37000 8.362034 
P17 -11.9673 39.9493 43000 5.533107 
P18 -24.8818 42.095 43000 74.7246 
P19 -34.374 43.996 43000 53.92886 
P20 -44.3497 46.44083 43000 55.77103 
P21 -61.77 47.44 43000 89.28184 
P22 -70.163 46.2543 43000 43.99628 
P23 -70.557 46.102 37000 2.317716 
P24 -71.739 45.9043 24000 6.98395 
P25 -72.9952 45.81 10000 9.270174 

waypoint   
[deg] 

  
[deg] 

h  
[feet] 

kd  
[min] 

Final (P26) -73.6412 45.7947 3000 6.280807 
Total    365.0061 
 
The time optimal trajectory of flight between Lisbon 

to Montreal (long-haul flight) contains 9 waypoints 
[initial waypoint (P1) → P14→ P3→ P4→ P5→ P10→ 
P11→ P13→ final waypoint (P26)], the distance between 
the initial and final waypoints in time optimal trajectory 
of this flight is 2772 nm. The comparison of travel time 
in different phases of flight for different trajectories and 
time optimal trajectory is shown in Table IX. 

Table IX suggest that by using the time optimal 
trajectory in long-haul flight (Lisbon – Montreal) the 
aircraft reaches to the final waypoint from the initial 
waypoint 9.9 minutes faster than the first trajectory 
which saves 2.7% of the total travel time and 10.8 
minutes faster than the second trajectory which save 
2.9% of total travel time. The time optimal trajectory of 
long-haul flight in 3D is shown in Fig. 5. 

 
TABLE IX 

TOTAL TIME NEEDED IN DIFFERENT TRAJECTORIES  
FOR LONG-HAUL FLIGHT 

Trajectory Time [min] Total 
[min] Climb Cruise Descent 

1 22.04 318.5 23.7 364.2 
2 22.5 317.7 24.9 365.1 

Time optimal 22.03 308.6 23.6 354.3 
 

 
 

Fig. 5. 3D time optimal trajectory in geocentric coordinates  
for long-haul flight 

 
In Fig. 5 the blue curve is the time optimal trajectory 

and the red circles around it are the waypoints of the 

trajectory. In this long-haul flight, the cruise phase is 
large compare to its climb and descent phases, thus in the 
fig. of time optimal trajectory for this flight the 
waypoints in the climb and descent phases are seems too 
close to each other. 

V. Conclusion 
This paper is based on finding the time optimal 

trajectory of climb, cruise, and descent phases of the 
flight, but ignores the take-off and landing phases of the 
flight. In this study, several steps were made in order to 
achieve a complete trajectory from predefined 4D 
waypoint networks that optimize the total travel time.  

This study uses Dijkstra’s single source shortest path 
algorithm in order to find the time optimal trajectory. 
Later on, this time optimal trajectory was used to 
compare with the existing 2 trajectories of different 
length (short, medium and long-haul) of flights. 

The analysis results show promising potential for 
reduction of travel time in different flights via using the 
Dijkstra’s single source shortest path algorithm, across a 
range of common aircrafts and routes. The results 
suggest that by flying time optimal trajectory for short-
haul flight, it is possible to save 2.7 − 3.7 minutes of 
travel time which is equivalent to 2.4 − 3.2 % of total 
travel time. In medium-haul flight by flying the time 
optimal trajectory the travel time was reduced by 4.2 − 
5.5 minutes or 1.9 – 2.6% of total travel time. For long-
haul flight, it is possible to save 9.9 − 10.8 minutes or 2.7 
− 2.9% of total travel time by flying the time optimal 
trajectory. In general, the savings of the travel time are 
proportional to the trip lengths, and depends on the 
aircraft types. Despite of the fact that the algorithm has 
proven reliable to find the time optimal trajectory from 
pre-defined 4D waypoint networks, there is still room for 
improvement. By using more trajectories with different 
cruise altitude in the networks more travel time can be 
saved, as there will be more waypoints to choose from. 
However, this approach is not well suited for online 
trajectory optimization as the waypoint networks need to 
be pre-defined which requires some amount of time. But 
this can be solved by generating the waypoint networks 
by direct optimal control methods. 

In addition, a realistic wind model and Air traffic 
control (ATC) restrictions can be imposed on the 4D 
waypoint networks to model more realistic flight. 
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