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Abstract
As part of the development of a new 4D Autopilot System for Unmanned Aerial Aircrafts (UAVs), i.e. a time-dependent robust
trajectory generation and control algorithm, this work addresses the problem of optimal path finding based on the aircraft’s
own sensors data output,  that may be unreliable due to noise on data acquisition and/or transmission under certain
circumstances. Although several filtering methods, such as the Kalman-Bucy Filter or the LQG/LTR, are available, the utter
complexity of the new control system, together with the robustness and reliability required of such a system on an UAV for
airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a
way of further mitigate errors propagation to the control system and improve its performance. As such, a new nonlinear
LQG/LTR algorithm, validated through computational simulation testing, is proposed on this paper. This research work was
conducted in the Laboratory of Avionics and Control of the Department of Aerospace Sciences (DCA) at the Faculty of
Engineering of the University of Beira Interior and supported by the Aeronautics and Astronautics Research Group (AeroG) of
the Associated Laboratory for Energy, Transports and Aeronautics (LAETA). The author would like to thank Professor K.
Bousson for valuable discussions during this work.
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Optimal Robust Nonlinear LQG/LTR Control with 
application to Longitudinal Flight Control 
  
 
 
Introduction 
 
Due to the complexity and rhythm of the nowadays life in this modern age, time is becoming 
increasingly scarce in order to keep up the pace with all the demands. And though, 
advancements in automation procedures and systems had largely helped to reduce workload 
and improve schedules, there is still an important gap that must be fulfilled. For instance, 
whilst actual flight plan fulfilment requires 4D navigation, existing autonomous navigation 
procedures are mostly done in 3D because of the stringent certification requirements for 4D 
flight and due to the complexity in coping with time of arrival at waypoints. Therefore, there 
is a need for the development and testing of an algorithm that, when implemented on an 
aircraft’s autopilot system, will enable the aircraft to autonomously fulfil its scheduled time-
of-arrival at a designated waypoint. As an initial step on that development process, the present 
work focuses on the simulated testing of improved and up-to-date optimal control and filtering 
methodologies that will be implemented in the aforementioned algorithm. More precisely it 
presents the background theory and simulated results of an LQG/LTR controller method when 
applied to a Classical Atmospheric Disturbances Simulation Test of an UAV on stable levelled 
flight.  
 
 
1. Theoretical Background 
 
In order to achieve the desired level of flight efficiency and safety, especially with beyond 
visual range UAVs flights, it is crucial to ensure proper control of the aircraft through error 
mitigation and pilot/operator’s workload reduction technologies. This level of precision flight 
control is achieved by resorting to the physical implementation of computerized systems that 
allow for automated flight. These systems are generally known as Autopilot Systems, and they 
combine the information provided by the aircraft’s onboard sensors with the known Flight 
Dynamics Equations, Aircraft’s Data, to correlate them through an algorithm and achieve a 
timely Optimal Control solution that will be commanded by the system to the Aircraft’s Control 
Surfaces and Engine(s). This algorithm is referred to as an Optimal Control Method. Following 
on from previously developed work [1] and tests results, this work focuses on the further 
improvement of the LQR Controller Method by addressing the treatment of the unavoidable 
noise on data acquisition sensors with the implementation of a Kalman Filter upon the LQR, a 
combination usually referred to as a LQG Controller Method. The theoretical background for 
such methods is provided on the following sub-sections.   
 
1.1. LQR Controller Method 
In a LQR controller, the time-continuous linear system, referring to longitudinal control, is 
described by [1][2][3][4]: 

x Ax Bu   , IRnx  and IRmu               (1) 

The cost function is defined as: 

 
0

,J F x u dt


             (2) 

Where: x – Aircraft’s Longitudinal State variation; A – Jacobian Matrix concerning the State 
Vector; x – State Vector; B – Jacobian Matrix concerning the Control Vector; u – Control Vector; 
J – Cost Function; F – Function of the state and control vectors. 

With  , T TF x u x Qx u Ru  .                             (3) 
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As for longitudinal flight, A  is the Jacobian matrix of F concerning the aircraft’s state vector 
x  and B the Jacobian matrix concerning the aircraft’s control vector u  obtained from 
linearization. 
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Where u must be such that it minimizes the coast function on the following way: 

     
0

: : T Tu u x J u x Qx u Ru dt


               (5) 

The feedback control law that minimizes the cost function in (eq. 3) is described by: 
u K x            (6) 

Where m nK   is the system’s gain matrix determined by: 
1 TK R B P           (7) 

This cost function (eq. 2) is often defined as a sum of the deviations of key measurements from 
their desired values. However, the main problem while properly scaling a LQR controller, i.e. 
fine-tuning the controller for optimal performance, resides in finding the adequate weighting 
factor’s Q and R matrices. In general LQR design, Q and R are simply determined by Bryson’s 
method [1][5], where each state (Q matrix) and control (R matrix) parameter (diagonal 
element) is calculated in relation to its maximum amplitude:  

2 2
,max ,max

___
1 1

_ii ii
i i

Q R
x u

            (8) 

Where: A – State Vector Jacobian Matrix; 0x – Initial State Vector; 0u – Initial Control Vector; B
– Control Vector Jacobian Matrix; V – Aircraft’s Speed;  – Path Angle; q – Pitch Rate;  – Pitch 

Angle; e – Elevator Deflection; T – Throttle Setting; u – Control Vector; x – State Vector; J – 
Cost Function; Q– State Vector Weighting Matrix; R – Control Vector Weighting Matrix; K – 
System’s Gain; P – P Problem. 
Although this method being a good starting point for trial-and-error iterations on the search for 
the intended controller results, it is somehow limited by its maximum state values as, even 
though the control values are limited only by their control surface’s maximum physical 
properties, they lack a more proper optimization algorithm. 

However, a better alternative method, proposed by Jia Luo and C. Edward Lan [6], is available, 
since 1995, for the Q and R matrices estimation. The R matrix is still determined using Bryson’s 
method (eq. 8) [1][5], as the problem lies, as noted before, in the determination of the optimal 
state values of the Q matrix. In this method, the cost function J (eq. 2) is minimized by a 
Hamiltonian matrix H, which is used to determine P.Q and R are, as stated before, weighting 
matrices for, respectively, the state and control variables, and must be respectively defined as 
positive-semidefinite and positive-definite. Considering the Theorem whereby a symmetrical 
matrix has only real eigenvalues, it can be deduced that when , 0TQ Q Q  , all its eigenvalues 

are   0i Q  and, when , 0TR R R  , then all its eigenvalues are   0i R  . The R matrix is 

therefore a Penalization (or Ponderation) matrix of the control vector, which allows for some 
flexibility upon its generation, and is therefore calculated by Bryson’s method (eq. 8). 
However, the Q matrix must be such that its eigenvalues match the eigenvalues from a group I 
Hamiltonian matrix H. Accordingly to the principle of the Pontriagin’s Maximum, the 
Hamiltonian matrix is associated to the LQR’s “P Problem” (eq. 9)[1]. This consists in the 
calculus of the H matrix by minimizing the control’s output cost function (eq. 6) while restricted 
by the LQR’s longitudinal time-continuous linear equation x  (eq. 1).  
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1

0

T

TT T

x Ax Bu A BR B
P H

Q AJ u x Qx u Ru dt





            
                    (9) 

The eigenvalues of H are thereby symmetrically distributed in relation to the imaginary axis, 
thus having positive and negative symmetrical real parts only. And as the “P Problem” is part 
of the Â matrix of the LQR’s feedback system described as follows [1]: 

1 TÂ A BR B P                                             (10) 

P is found by solving the continuous time algebraic Riccati’s equation [2][7], in (eq. 11): 
1 0T TA P PA PBR B P Q                                 (11) 

As the eigenvalues of Â are the same of those of the Group I of the Hamiltonian matrix H, they 
can be specified as [1]: 

1 1 1;

;n n n

i

i

  

  

 


  

                                                  (12) 

With    Re 0;Im 0n n n n        .  

Therefore, the state matrix Q must be determined such that [1]: 

 : det 0ii I H                                             (13) 

Where I is an Identity matrix. For simplified calculations, it is enough to use the state matrix 
A’s eigenvalues, but in order to minimize the cost function J (eq. 2) under certain imposed 
flight qualities, and therefore, these eigenvalues must be subjected to such impositions. The Q 

matrix is thereby defined as a diagonal matrix composed by a single vector qi =  1 2
T

nq q q

. To satisfy the prior condition (eq. 13), qi must be such that [1]:  

         2in order
to minimize

1

: det 0
n

i i i i i i
i

i f q I H q J q f q


             (14) 

Finding the iq values that satisfy ( )J q will give the solution to Q. However, in order to ensure 
that Q comes as a positive-semidefinite matrix with Group I eigenvalues, the “diagonal vector” 

is rather defined by the square root of its elements, i.e. 2 2 2
1 2

T
i nq q q q    , which prevents 

Q from having undesired negative values in its diagonal [1]. A new control law comes as: 

 ref refu u K x x             (15) 

This allows the LQR controller to fully stabilize an aircraft state and control variables for 
optimized R and Q weighting matrices as the control output vector is given in function of the 
deviation from the required output ( refu ) to maintain the aircraft on the desired attitude 

described by the reference state vector refx [1].   
 
1.2. Kalman-Bucy Filter 
From the general discrete-time domain Kalman Filter theory, the estimator is given by: 

   ˆ ˆ ˆ ˆx Ax L y Cx A LC x Ly                  (16) 
The Kalman filter is applied whenever the uncertainties (or noise present either in the model, 
in the observations or in both) are not negligible and therefore, cannot be ignored. This means 
that 0   and 0  .These two random vectors are assumed to be white noises with Gaussian 
distribution [8], i.e. both have null averages and each one has over-time uncorrelated values.  

 
 

X AX t

Y Cx t




  
  

                                                                                                               (17) 

The Kalman filter’s equation (in time-continuous domain, i.e. Kalman-Bucy Filter) follows the 
same logic reasoning as for the discrete-time domain, but with two particular details [8]: 

1. The Riccati’s equation is differential, meaning: 
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* * 1

0 0 0 0 0 0ˆ ˆ T

P AP PA PC R CP Q

P t P E x x x x

    
       

  (18) 

Where 0x̂  is the assumed initial state for the system considered for the solving of the 

differential equation (eq.16).  
2. The weighting matrices are given by [8]: 

    T TQ E and R E     (19) 

Using the above equations (eq.18) and (eq.19), enables the achievement of the solution  kP t  

for the differential matricial equation of Riccati on the instant kt , being that [8]: 

   , :P t t t t        (20) 

means that the estimative is very accurate [8]. 
 

Be it  k kP P t  the solution of the Riccati’s equation on the instant kt , the gain is given by 

[8]: 

  1
k k kL t L P CR     (21) 

The state filtering estimation equation is thereby as follows [8]: 

ˆ ˆ ˆ( )( )x Ax L t y Cx      (22) 

Wherein, 1ˆkx   must be calculated as the solution of the differential equation (eq.22) [8]. 

 
1.3. LQG Controller Method 
In control theory, the LQG, or Linear Quadratic Gaussian control problem, is one of the most 
fundamental problems on optimal control. Essentially, the LQG controller is a Kalman Filter, 
i.e. a Liner Quadratic Estimator, applied to a LQR, i.e. Linear Quadratic Regulator and deals 
with uncertain linear systems disturbed by additive white Gaussian noise, while having 
incomplete state vector information (i.e. not all the state vector variables are measured and 
and/or readily available for feedback, meaning they are unknown variables) and undergoing 
control subject to quadratic costs. “Moreover, the solution is unique and constitutes a linear 
dynamic feedback control law that is easily computed and implemented. Furthermore, it is also 
fundamental to the optimal control of perturbed non-linear systems.” [10][11] 
“The separation principle guarantees that both the LQE and LQR can be designed and computed 
independently. LQG control applies to both linear time-invariant systems as well as linear time-
varying systems. The application to linear time-invariant systems is well known. The application 
to linear time-varying systems enables the design of linear feedback controllers for non-linear 
uncertain systems.” [10] 

1.3.1. Continuous-Time Linear System LQG 
Since the LQR requires a linearization of the system in order to be implemented, the same 
linearized system can be used for our advantage as it enables the use of the easier to implement 
linear LQG for a continuous-time system, instead of the non-linear option. 
Given the following time-continuous linear dynamic system [10][11]: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t A t x t B t u t t

y t C t x t t




  
  

  (23) 

Where: x  is the state vector; x  is the estimation of the state vector x ; u  is the control inputs 
vector; y is the vector of the measured outputs available for feedback; ( )t  is the additive 

white Gaussian noise that affects the system; ( )t  is the measurement of the white Gaussian 

noise. The objective is to find the control input history ( )u t  which at every time t  may depend 

only on the past measurements   ,0y t t t    such that the following cost function is 

minimized [10][11]: 
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0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , 0, ( ) 0, ( ) 0

TT T TJ E x T Fx T x t Q t x t u t R t u t dt F Q t R t          (24) 

“Where E  denotes the expected value. The final time (horizon) T  may be either finite or 

infinite. If the time horizon tends to infinity, the first term ( ) ( )Tx T Fx T  of the cost function 
becomes negligible and irrelevant to the problem. Also, to keep the costs finite, the cost 

function has to be taken to be /J T ” [10]. 
The LQG controller that solves the LQG control problem is specified by the following equations 
[10][11]: 

   ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , (0) (0)

ˆ( ) ( ) ( )

x t A t x t B t u t K t y t C t x t x E x

u t L t x t

     


 
 (25) 

“The matrix ( )K t  is called the Kalman gain of the associated Kalman filter represented by the 

first equation. At each time t  this filter generates estimates ˆ( )x t  of the state ( )x t  using the 

past measurements and inputs” [10].The Kalman gain ( )K t  is computed from the matrices 

( )A t  and ( )C t , as well as the two intensity ( )V t  and ( )W t  associated with the white 

Gaussian noises ( )t  and ( )t  and finally (0) (0)TE x x   ”. These five matrices determine 

the Kalman gain through the following associated matrix Riccati differential equation [10][11]:  
1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(0) (0) (0)

T T

T

P t A t P t P t A t P t C t W t C t P t V t

P E x x

    
    

         (26) 

Given the solution ( ),0P t t T  , the Kalman gain equals to [10][11]: 
1( ) ( ) ( ) ( )TK t P t C t W t   (27) 

The matrix ( )L t  is called the feedback gain matrix and is determined by the matrices ( )A t , 

( )B t , ( )Q t , ( )R t  and F  through the following associated matrix Riccati differential 
equation [10][11]: 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

T TS t A t S t S t A t S t B t R t B t S t Q t

S T F

    



 (28) 

Given the solution ( ),0S t t T   the feedback gain equals to [10][11]: 
1( ) ( ) ( ) ( )TL t R t B t S t   (29) 

While the first of the two Riccati matrices is running forward in time, the second one is running 
backwards in time. This similarity in between the two Riccati matrices is known as duality. The 
first matrix Ricatti differential equation solves the linear-quadratic-estimation problem (LQE), 
while the second matrix Riccati differential equation solves the linear-quadratic-regulator 
problem (LQR). These problems are dual and together solve the linear-quadratic-Gaussian 
problem (LQG).  
“When ( )A t , ( )B t , ( )C t , ( )Q t , ( )R t , and noise intensity matrices ( )V t and ( )W t  do not 

depend on t   and when T  tends to infinity, the LQG controller becomes a time-invariant 
dynamic system, meaning that both matrix Ricatti differential equations may be replaced by 
the two associated algebraic Riccati equations”  [10]. 
 
1.4. LQG/LTR Controller Method 
The Loop Transfer Recovery, or LTR for short, was specifically developed to overcome 
robustness problems in the LQG control method, hence it is most commonly known as the 
LQG/LTR Method, which stands for Linear Quadratic Gaussian Control synthesis with Loop 
Transfer Recovery [12]. It was firstly introduced by Doyle and Stein in [12]. “The point of this 
approach is based on the fact that using the observer has no effect on the closed loop transfer 
function but has a harmful influence on the robustness properties. The LQG/LTR method aims 
at modifying the Kalman filter so that the harmful effects on stability margins are attenuated 
by making the open loop transfer function of the system (usually referred to as plant) with 
observer asymptotically approximate the one which this would without the observer included” 
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[13]. In fact, and accordingly with Chen, the LQG alone is “not an optimal control design 
method” [14], “not even a stochastic control design method” [15], and “uses Fictitious KF” 
[14](Kalman Filter). Therefore, “LQG/LTR should be regarded as one word” [14], as it 
constitutes “a robust control design method that uses LQG control structure” [15]. So, be it 

( )G s  a linear continuous-time plant with state-space matrices , , ,A B C  and 0D  . From the 
system’s model [16]: 

(y C )x Ax Bu H x

y Cx Du

   
  

  (30) 

Where , ux  and y  are respectively the system’s state vector, the algorithm’s calculated control 

vector, and the system’s outcome of that control input. x  is the system’s state variation from 
the initial state, x , in time due to the control vector input, u  and the respective measured 
system’s outcome, i.e. the system’s state reaction to that input, y . The estimator, x̂ , is the 
system’s state estimation based on the previous system’s outcome, y . And the system’s 
feedback of the difference in between its known, measured current state, y , and it’s prior 

estimative, x̂ , is given by the estimation’s variation parameter, x̂ , as [16]:   

ˆ ˆ ˆ( )

ˆ

x Ax Bu H y Cx

u Gx Gx

    


   
  (31) 

The LTR can be applied either at the entrance of plant, in which case G is constant and H  is 
variable, or at the exit of the plant, in which case G is variable and H  is time invariable 
(constant). The goal is then to minimize the cost function [16]: 

0
min ( ) ( ) ( ) ( )T TJ y t y t u t Ru t dt


      (32) 

Considering TQ C C  and R I  with 0  . Through Ackermann’s Formula [16], 0TQ Q   

and hence 0TR R  . Then, in accordance with the LTR fundamental Theorem, if the primal 
state is controllable, the dual state is observable, the Plant’s Nominal Transfer Function Matrix 
on frequency-domain, ( )NG s , is a square matrix, and its zeros/poles are on LHP (Left-Half Plan) 
[16]: 

1 TG B P    (33) 

Where 0TP P    is the solution to the Algebric Riccati’s Equation given by [16]: 
1

0T T TPA A P C QC PBB P


       (34) 

And so, conerting the above to an equivalent feedback controller in the transfer-function form the 
LQG/LTR gain, K, is given by [16][17]: 

       
11 1

0
lim ( ) ,  with det .det 0K s C I A B C I A H I A BG I A HC


   
 


           (35) 

 
 
2. Nonlinear System LQG/LTR Controller Method Solution 

However, as good as an advantageous approach the LQG/LTR method might be, in its current 
form it is only applicable to linear system’s models (plants). Meanwhile, Aircraft’s Navigation 
is inherently nonlinear and time-continuous. Therefore, there is a need to adapt the previously 
described method’s equations and formulation for continuous-time nonlinear LQG/LTR system’s 
application. For that purpose, the method should comply with two pre-requirements: 

|| || 0

 

( )
lim 0,  ( ) is nonlinear

|| x ||

Find Q   || ( ) ||

x

that satisfies

f x
f x

f x x



  

  

  (36) 

The system’s model (plant) thereby is defined as: 
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ˆ ( )
,  with 0

x Ax Bu f x
Du

y Cx Du

  
  

  (37) 

The linear LQG/LTR system’s model is given by the previous (eq.30)[16]: 

   ˆ ˆ ˆx Ax Bu f x H y Cx

y Cx

    



  (38) 

Therefore, it is easy to see that, when replacing y Cx  on the first equation, we get our 

nonlinear ( )f x  for the estimator [16]: 

 ˆ ˆx Ax Bu H Cx Cx      (39) 
Interestingly enough, ˆ ˆCx Cx x x   , which is nothing less than the estimation’s error, x  [16]: 

ˆx x x    (40) 
Also, the variation in estimation’s error is given by [16]: 

x Ax   (41) 
 It would seem from here, that the first criteria for this method is not met as: 

|| || 0 || || 0 || || 0

ˆ ˆ( ) ( ) ( )
lim 0 lim 0 lim 0

|| || || || || ||x x x

f x H Cx Cx H x x

x x x  

 
      (42) 

Which, as the fraction’s bottom element converges for zero faster than the upper element, 
would not hold true to the condition meaning that  f x  would converge for infinty rather than 

to zero as intended. However, remember that from (eq.40), the estimation’s error, x , is null 
if A  is stable [16], meaning that: 

     
|| || 0 || || 0 || || 0 || || 0 || || 0

ˆ 0 0
lim 0 lim 0 lim 0 lim 0 lim 0 0 0 0

|| || || || || || || ||x x x x x

f x H x x H

x x x x    


            (43) 

Thereby, the condition holds true for that ( )f x , as long as A  is stable. This becomes even more 
evident the greater the order of the nonlinear system, as e.g.: 

     2 2 2

|| || 0 || || 0 || || 0 || || 0

|| || 0

ˆ 0
lim 0 lim 0 lim 0 lim 0

|| || || || || || || ||

lim 0 0 0

x x x x

x

H x Cx Cx H xf x Hx

x x x x

Hx

   



  
      

   
 (44) 

Therefore as long as A  is stable, which the LQG ensures (through the linearization of the flight 
system’s equations as pre-requirement for LQR implementation), not only the second order of 
Taylor’s expansion, ( )f x , will satisfy the criteria, as, as it would be desirable, it ensures over-

time estimation accuracy as 0x .  
With ( )f x  borrowed from the already existing method, only the matrix Q remains to be defined 
in such a way that it meets the established criteria. 
From [18], for a multivariable quasilinear stochastic system (Aircraft’s Navigation fits in the 
description), where , ,  and A B Cmatrices variations, and  (noise)  variations are null, it is safe 

to assume 0 .P P const C B     . Therefore, on Matlab®, the command that would give the 
LQR solution lqr(AT,CT,Q,R) is replaced by the modified command lqr(A,B,Q,R) in order to 
achieve the LQG solution. The calculated eigenvalues on previous work, for the longitudinal 
flight’s short and long period modes, are given by [1]: 

   1,2 2,25 19843 0,0693 0,1588SP LP i i             (45) 

The LQR’s weighting matrix Q is traditionally calculated by the Bryson’s Method (eq. 8)[1]. 
Quickly it is perceived that the Bryson’s Method directly satisfies the second criteria, for 
positive eigenvalues only, as, from LQR (eq.3): 

 
2 2
,max ,max

T T
T T

i i

x x x
f x x Qx x Qx x x

x x
          (46) 

Which is not the case, as the obtained eigenvalues on (eq.45) have negative real parts. 
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However, on the previous work [1], matrix Q was calculated through a new method presented 
by Jia Luo and C. Edward Lan in 1995 [6], which proved to be a more robust and reliable 
method. For the Luo and Lan Method, Q must be such that: 

         

     

2

that minimizes
1

2

1

: det 0

0

n

i i i i i i

i

n

i i

i

i f q I H q J q f q x

J q f q x

 







      

   




 (47) 

This method as the advantage of being able to calculate the Q matrix in order to satisfy the 

mentioned condition despite the use of negative poles/eigenvalues,  . Therefore, this method 
allows for the continuation from the previously achieved eigenvalues. Using the same 
eigenvalues will also provide a better comparison term between the results of this Quasilenear 
LQG/LTR method with the previously achieved results using only LQR.  
 
3. Numerical Simulation  

For space saving purposes, only part of the results is showcased in this article. The results 
obtained for the LQG solution, without LTR, using Aoki’s Method are shown on figure 1, while 
the results obtained for the LQG/LTR, using Aoki’s Method for the LQG and an adaptation of 
the Luo and Lan Method for the recalculation of the Q matrix are shown on figure 2.  
For better comparison terms, the numerical model follows on the same one used for the LQG 
vs Batz-Kleinman Classical Disturbances Simulation Test of the previous work [1], for the given 

state vector  25.0000 0.0000 0.0000 0.0416
T

X  , which, upon inflicted a disturbances vector  

2x , becomes  23.0000 2.0000 0.0300 0.0716
T

iX  , and C is an 8x8 identity matrix. 

 
Figure 1 – Linear Quadratic Gaussian Control Method results on a Classical Disturbances Simulation Test.  

 
Figure 2 – Linear Quadratic Gaussian with Loop Transfer Recover Control Method results on a Classical Disturbances 
Simulation Test.  

 
As it is easily perceptible from the comparison between the two figures, the new LQG/LTR 
method offers a much faster convergence to the reference values to the same degree of 
smoothness as the standalone LQG method and its predecessor in which it is build upon, the 
LQR method. As this new method simply replaces the calculation formulae for the Q matrix, 
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and uses the same Matlab® lqr command due to the Aoki method, this LQG/LTR with Aoki 
method doesn’t require an increase on computational workload, remaining as nimble as the 
original non-filtered LQR method. And the diagonal values of the new Q matrix are given by 

 0.0073 0.0075 0.0156 0.0122 0.0113 0.0006 0.4572 0.0663
T

iq  . 

 
Conclusion  
 
In conclusion, as both the LQR and the LQG ensure a stable A matrix, the resource to the Luo 
and Lan Method enables the use of the established LQG/LTR solution formulae for the nonlinear 
continuous-time domain systems, by simply recalculating the Q matrix values to be used, 
without having to resource to the separation principle, and separately design a LQR and an 
Extended Kalman Filter (EKF), which had otherwise proven inadequate as they had lead to 
several complications with matrix dimensions disagreements in previous attempts. This 
provides a very quick, easy, and low-computational solution for nonlinear continuous-time 
systems LQG/LTR method. It is easily seen that the LQG/LTR results converge far faster and 
smoother than the LQG alone, proving both the LQG/LTR concept and the new method.      
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