9 research outputs found

    Mitochondrial fusion, fission, and biogenesis in prolonged critically ill patients

    No full text
    Context:Critical illness induces swelling, enlargement, and dysfunction of mitochondria, which in liver, but not in muscle, is aggravated by excessive hyperglycemia. We previously demonstrated impaired autophagic clearance of damaged mitochondria in fed prolonged critically ill patients. Impaired fusion/fission-mediated repair and/or renewal through biogenesis may further accentuate mitochondrial abnormalities.Objective:We studied mitochondrial fusion/fission and biogenesis and how these are affected by preventing hyperglycemia with insulin during critical illness.Design and Setting:Patients admitted to a university hospital surgical/medical intensive-care unit participated in a randomized study.Patients:We studied adult prolonged critically ill patients vs. controls.Intervention:Tolerating hyperglycemia up to 215 mg/dl was compared with intensive insulin therapy targeting normoglycemia (80-110 mg/dl).Main Outcome Measures:In liver and skeletal muscle, we quantified levels of several proteins involved in mitochondrial fusion/fission and biogenesis.Results:Key players in mitochondrial fusion/fission and biogenesis were up-regulated in postmortem liver (1.4- to 3.7-fold) and rectus abdominis (1.2- to 4.2-fold) but not in in vivo or postmortem vastus lateralis biopsies of critically ill patients. Maintaining normoglycemia with insulin attenuated the hepatic response in the mitochondrial fusion/fission process but did not affect the markers of mitochondrial biogenesis in liver or muscle.Conclusions:Our observations suggest tissue-dependent attempts of compensatory activation of mitochondrial repair mechanisms during critical illness. Considering the previously observed persistent mitochondrial damage, this activation may be insufficient and contribute to mitochondrial dysfunction. Suppressed activation of fusion/fission when excessive hyperglycemia is prevented with insulin may reflect reduced need for diluting (less) damage during normoglycemia or, alternatively, a suppressive effect of insulin on repair.status: publishe

    Tissue-specific glucose toxicity induces mitochondrial damage in a burn injury model of critical illness

    No full text
    Objective: In critically ill patients, preventing hyperglycemia (HG) with insulin therapy partially prevented organ dysfunction and protected mitochondria. A study in a rabbit model of critical Illness indicated that lower blood glucose level, rather than higher insulinemia, is a key factor in such organ protection. In this model, we now Investigated the Impact of blood glucose lowering vs. hyperinsulinemia (HI) on mitochondria in relation to organ damage. We assessed whether such effects on mitochondria are mediated indirectly via organ perfusion or directly via reducing cellular glucose toxicity. Design: Prospective, randomized laboratory investigation. Setting: University laboratory. Subjects: Three-month-old male rabbits. Interventions. After induction of critical illness by burn injury, followed by fluid-resuscitation and parenteral nutrition, rabbits were allocated to four groups, each a combination of normal or elevated blood glucose levels with normal or elevated insulin levels. This required alloxan administration, immediately followed by intravenous insulin and glucose infusions titrated to the respective targets. Measurements and Main Results. In liver, the reduced damage by glucose lowering was not explained by better perfusion/oxygen delivery. Abnormal mitochondrial ultrastructure and function was present in the two hyperglycemic groups, most pronounced with concomitant HI. Affected mitochondrial respiratory chain enzyme activities were reduced to 25% to 62% of values in healthy rabbits, In the presence of up to five-fold increased tissue levels of glucose. This was accompanied by elevated levels of dicarbonyls, which may mediate direct toxicity of cellular glucose overload and accelerated glycolysis. The abnormalities were also present in myocardium, although to a lesser extent and absent in skeletal muscle. Conclusions. In a rabbit model of critical illness, HG evokes cellular glucose overload in liver and myocardium inducing mitochondrial dysfunction, which explained the HG-induced organ damage. Maintenance of normoglycemia, but not HI, protects against such mitochondrial and organ damage. (Crit Care Med 2009; 37:1355-1364

    Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients

    No full text
    Responses to critical illness, such as excessive inflammation and hyperglycemia, may trigger detrimental chain reactions that damage cellular proteins and organelles. Such responses to illness contribute to the risk of (nonresolving) multiple organ dysfunction and adverse outcome.status: publishe

    Hyperglycemic kidney damage in an animal model of prolonged critical illness

    Get PDF
    Acute kidney injury frequently complicates critical illness and increases mortality; maintaining normoglycemia with insulin has been shown to reduce the incidence of intensive care unit (ICU)-acquired kidney injury. Here we tested the mechanisms by which this intervention might achieve its goal, using a rabbit model of burn-induced prolonged critical illness in which blood glucose and insulin were independently regulated at normal or elevated levels. Hyperglycemia caused elevated plasma creatinine and severe morphological kidney damage that correlated with elevated cortical glucose levels. Renal cortical perfusion and oxygen delivery were lower in hyperglycemic/hyperinsulinemic rabbits, compared to other groups, but this did not explain the elevated creatinine. Mitochondrial respiratory chain activities were severely reduced in the hyperglycemic groups (30-40% residual activity), and were inversely correlated with plasma creatinine and cortical glucose. These activities were much less affected by normoglycemia, and hyperinsulinemia was not directly protective. Mitochondrial damage, evident at day 3, preceded the structural injury evident at 7 days. Our study found that hyperglycemia evoked cellular glucose overload in the kidneys of critically ill rabbits, and this was associated with mitochondrial dysfunction and renal injury. Normoglycemia, independent of insulinemia, protected against this damage
    corecore