39 research outputs found

    Understanding the UK hospital supply chain in an era of patient choice

    Get PDF
    Author Posting © Westburn Publishers Ltd, 2011. This is a post-peer-review, pre-copy-edit version of an article which has been published in its definitive form in the Journal of Marketing Management, and has been posted by permission of Westburn Publishers Ltd for personal use, not for redistribution. The article was published in Journal of Marketing Management, 27(3-4), 401 - 423, doi:10.1080/0267257X.2011.547084 http://dx.doi.org/10.1080/0267257X.2011.547084The purpose of this paper is to investigate the UK hospital supply chain in light of recent government policy reform where patients will have, inter alia, greater choice of hospital for elective surgery. Subsequently, the hospital system should become far more competitive with supply chains having to react to these changes as patient demand becomes less predictable. Using a qualitative case study methodology, hospital managers are interviewed on a range of issues. Views on the development of the hospital supply chain in different phases are derived, and are used to develop a map of the current hospital chain. The findings show hospital managers anticipating some significant changes to the hospital supply chain and its workings as Patient Choice expands. The research also maps the various aspects of the hospital supply chain as it moves through different operational phases and highlights underlying challenges and complexities. The hospital supply chain, as discussed and mapped in this research, is original work given there are no examples in the literature that provide holistic representations of hospital activity. At the end, specific recommendations are provided that will be of interest to service to managers, researchers, and policymakers

    Enhancing the sustainability performance of Agri-Food Supply Chains by implementing Industry 4.0

    Full text link
    [EN] In order to enhance the sustainability in the supply chain, its members should define and pursue common objectives in the three dimensions of the sustainability (economic, environmental and social). The Agri-Food Supply Chain (AFSC) is a network of different members such as farmers (producers), processors and distributors (wholesales, retailers.), etc.. In order to achieve the performance objectives of the AFSC, Industry 4.0 technologies can be implemented. The aim of this paper is to present a classification of these technologies according to two criteria: objective to be achieved (environmental or social) specified in the main issues to be covered in each objective and member of the AFSC supply chain where it is implemented. In this work, we focus on technologies that deal with environmental and social sustainability because economic sustainability will depend on the specific characteristics of the business (a supply chain using a specific Industry 4.0 technology may be profitable while others do not).This work has been funded by the Project GV/2017/065 "Development of a decision support tool for the management and improvement of sustainability in supply chains" funded by the Regional Government of Valencia. Authors also acknowledge the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems.Pérez Perales, D.; Verdecho Sáez, MJ.; Alarcón Valero, F. (2019). Enhancing the sustainability performance of Agri-Food Supply Chains by implementing Industry 4.0. IFIP Advances in Information and Communication Technology. 568:496-503. https://doi.org/10.1007/978-3-030-28464-0_43S496503568Camarinha-Matos, L.M., Fornasiero, R., Afsarmanesh, H.: Collaborative networks as a core enabler of Industry 4.0. In: Camarinha-Matos, L.M., Afsarmanesh, H., Fornasiero, R. (eds.) PRO-VE 2017. IAICT, vol. 506, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65151-4_1Stich, V., Gudergan, G., Zeller, V.: Need and solution to transform the manufacturing industry in the age of Industry 4.0 – a capability maturity index approach. In: Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y. (eds.) PRO-VE 2018. IAICT, vol. 534, pp. 33–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99127-6_3Flores, M., Maklin, D., Golob, M., Al-Ashaab, A., Tucci, C.: Awareness towards Industry 4.0: key enablers and applications for internet of things and big data. In: Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y. (eds.) PRO-VE 2018. IAICT, vol. 534, pp. 377–386. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99127-6_32Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16, 1699–1710 (2008)Prima, W.A., Xing, K., Amer, Y.: Collaboration and sustainable agri-food supply chain: a literature review. In: MATEC (2016). https://doi.org/10.1051/matecconf/20165802004Pérez Perales, D., Alarcón Valero, F., Drummond, C., Ortiz, Á.: Towards a sustainable agri-food supply chain model. The case of LEAF. In: Ortiz, Á., Andrés Romano, C., Poler, R., García-Sabater, J.-P. (eds.) Engineering Digital Transformation. LNMIE, pp. 333–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96005-0_40Savastano, M., Amendola, C., Bellini, F., D’Ascenzo, F.: Contextual impacts on industrial processes brought by the digital transformation of manufacturing: a systematic review. Sustainability 11, 891 (2019)Varela, L., Araújo, A., Ávila, P., Castro, H., Putnik, G.: Evaluation of the relation between lean manufacturing, Industry 4.0, and sustainability. Sustainability 11, 1439 (2019)Bonilla, S.H., Silva, H.R.O., da Silva, M.T., Gonçalves, R.F., Sacomano, J.B.: Industry 4.0 and sustainability implications: a scenario-based analysis of the impacts and challenges. Sustainability 10, 3740 (2018)Bányai, T., Tamás, P., Illés, B., Stankeviciute, Z., Bányai, A.: Optimization of municipal waste collection routing: impact of Industry 4.0 technologies on environmental awareness and sustainability. Int. J. Environ. Res. Public Health. 16, 634 (2019)Lin, K.C., Shyu, J.Z., Ding, K.: A cross-strait comparison of innovation policy under Industry 4.0 and sustainability development transition. Sustainability 9, 786 (2017)Kamble, S.: Sustainable Industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. In: Process Safety and Environmental Protection Transactions of the Institution of Chemical Engineers, Part B, vol. 117, pp. 408–25. Institution of Chemical Engineers (2018)Franciosi, C., Iung, B., Miranda, S., Riemma, S.: Maintenance for sustainability in the Industry 4.0 context: a scoping literature review. IFAC-Pap. Online 51(11), 903–908 (2018)Bocken, N.M.P., Short, S.W., Rana, P., Evans, S.: A literature and practice review to develop sustainable business model archetypes. J. Clean. Prod. 65, 42–56 (2014)Bourlakis, M., Maglaras, G., Aktas, E., Gallear, D., Fotopoulos, C.: Firm size and sustainable performance in food supply chains: insights from Greek SMEs. Int. J. Prod. Econ. 152, 112–130 (2014)Garbie, I.H.: An analytical technique to model and assess sustainable development index in manufacturing enterprises. Int. J. Prod. Res. 52(16), 4876–4915 (2014)Beier, G., Niehoff, S., Ziems, T., Xue, B.: Sustainability aspects of a digitalized industry - a comparative study from China and Germany. Int. J. Precis. Eng. Manuf. Green Technol. 4, 227–234 (2017)Pérez, D., Verdecho, M.J., Alarcón, F: Industry 4.0 for the development of more sustainable decision support tools for agri-food supply chain management. In: 13rd International Conference on Industrial Engineering and Industrial Management, XXIII, Gijón, Spain (2019)Xiaolin, L., Linnan, Y., Lin, P., Wengfeng, L., Limin, Z.: Procedia engineering county soil fertility information management system based on embedded GIS. Procedia Eng. 29, 2388–2392 (2012)Satyanarayana, G.V.: Wireless sensor based remote monitoring system for agriculture using ZigBee and GPS. In: 2013 (CAC2S), pp. 110–114 (2013)Phillips, A.J., Newlands, N.K., Liang, S.H.L., Ellert, B.H.: Integrated sensing of soil moisture at the field-scale: measuring, modeling and sharing for improved agricultural decision support. Comput. Electron. Agric. 107, 73–88 (2014)Liopa-tsakalidi, A., Tsolis, D., Barouchas, P.: Application of mobile technologies through an integrated management system for agricultural production. Procedia Technol. 8, 165–170 (2013). (Haicta)Yerpude, S., Singhal, T.K.: Impact of Internet of Things (IoT) data on demand forecasting. Indian J. Sci. Technol. 10, 5 (2017)Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.: Big data in smart farming – a review. Agric. Syst. 153, 69–80 (2017)Castka, P., Balzarova, M.A.: ISO 26000 and supply chains-on the diffusion of the social responsibility standard. Int. J. Prod. Econ. 111(2), 274–286 (2008)Stock, T., Obenaus, M., Kunz, S., Kohl, H.: Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential. Process. Saf. Environ. 118, 254–267 (2018)Verdecho, M.J., Pérez, D., Alarcón F.: Proposal of a customer-oriented sustainable balanced scorecard for agri-food supply chains. In: 12th International Conference on Industrial Engineering and Industrial Management, Girona, Spain, 12–13 July (2018)Valcour, P.M., Hunter, L.W.: Technology, organizations, and work-life integration. In: Kossek, E.E. Lambert, S.J. (eds.), Work and Life Integration: Organizational, Cultural, and Individual Perspectives, pp. 61–84. Lawrence Erlbaum Associates, Mahwah (2005)Arntz, M., Gregory, T., Zierahn, U.: The risk of automation for jobs in OECD countries: a comparative analysis. In: OECD Social, Employment and Migration Working Papers, no. 189. OECD Publishing, Paris (2016)Grubert, J., Langlotz, T., Zollmann, S., Regenbrecht, H.: Towards pervasive augmented reality: context-awareness in augmented reality. IEEE Trans. Vis. Comput. Graph. 23, 1 (2016)Velthuis, A.G.J.: New Approaches to Food-Safety Economics. Kluwer Academic Publishers, Dordrecht (2003)Sándor, Z.P., Csiszár, C.: Development stages of intelligent parking information systems for trucks. Acta Polytechnica Hungarica 10(4), 161–174 (2013)Scognamiglio, V., Arduini, F., Palleschi, G., Rea, G.: Biosensing technology for sustainable food safety. Trends Analyt. Chem. 62, 1–10 (2014)Brynjolfsson, E., McAfee, A.: The Second Machine Age. Work, Progress, and Prosperity in a Time of Brilliant Technologies. W.W. Norton & Company, London (2014)Smith, A., Caiazza, T.: Automation in everyday life (2017). http://assets.pewresearch.org/wpcontent/uploads/sites/14/2017/10/03151500/PI_2017.10.04_Automation_FINAL.pdfHefferon, K.L.: Nutritionally enhanced food crops; progress and perspectives. Int. J. Mol. Sci. 16, 3895–3914 (2015)Glass, S., Fanzo, J.: Genetic modification technology for nutrition and improving diets: an ethical perspective. Curr. Opin. Biotech. 44, 46–51 (2017)Moe, T.: Perspectives on traceability in food manufacture’. Trends Food Sci. Technol. 9(5), 211–214 (1998)Latino, M., Corallo, A., Menegoli, M.: From Industry 4.0 to Agriculture 4.0: how manage product data in agri-food supply chain for voluntary traceability, a framework proposed. In: 20th International Conference on Food and Environment (ICFE), Rome (2018)Linus, U.O.: Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 1(1), 101–106 (2003)Maumbe, B.M., Okello, J.: Uses of information and communication technology (ICT) in agriculture and rural development in Sub-Saharan Africa: experiences from South Africa and Kenya. IJICTRDA 1(1), 1–22 (2010)Dlodlo, N., Kalezhi, J.: The internet of things in agriculture for sustainable rural development. In: International Conference on Emerging Trends in Networks and Computer Communications (ETNCC) (2015

    Producers Responding to Environmental Turbulence in the Greek Agricultural Supply Chain:Does Buyer Type Matter?

    Get PDF
    There are many changes in the EU Agricultural Supply Chain (ASC). These changes cause environmental turbulence for supply chain entities operating in this sector. In the Greek ASC, there is a significant decline in its performance in particular at producers’ level. Based on the Contingency Theory this paper aims to identify the relevant environmental turbulence factors in Greek ASC context from the producers’ perspective and ascertain their impact on producers based on their choice of buyer type i.e. collaboration type. Twenty in-depth semi-structured interviews were conducted with Greek ASC producers. Thematic analysis was used to analyse the interviews. The findings suggest the existence of six major environmental turbulence factors at producers’ level which are: regulatory, market, competitive, weather, economic and political turbulence factors. Producers selling their products to cooperatives were found to be significantly impacted by the different environmental turbulence factors. Future research directions as well as managerial and policy implications are identified

    A holistic framework of corporate website favourability

    Get PDF
    This paper extends the current knowledge of corporate website favourability (CWF) by developing a comprehensive conceptual model of its influence on corporate image, corporate reputation, loyalty and identification. The paper reviews previous studies on corporate websites from the perspectives of marketing, management, corporate identity and corporate visual identity in order to inform our understanding of the antecedents and consequences of CWF. The propositions and the conceptual framework present an approach by which a corporation can design and manage a favourable corporate website. A number of important contributions are offered: First, the paper adds to the understanding of CWF; second, it discusses the antecedents of CWF by drawing upon the existing literature; third, it is beneficial for practitioners in shaping CWF strategies, and fourth, it offers possible consequences of CWF and provides a framework for future testing

    Internet-Induced Marketing Techniques: Critical Factors in Viral Marketing Campaigns.

    Get PDF
    The rapid diffusion of the Internet and the emergence of various social constructs facilitated by Internet technologies are changing the drivers that define how marketing techniques are developed and refined. This paper identifies critical factors for viral marketing, an Internet-based 'word-of-mouth' marketing technique. Based on existing knowledge, five types of viral marketing factors that may critically influence the success of viral marketing campaigns are identified. These factors are the overall structure of the campaign, the characteristics of the product or service, the content of the message, the characteristics of the diffusion and, the peer-to-peer information conduit. The paper discusses three examples of viral marketing campaigns and identifies the specific factors in each case that influence its success. The paper concludes with a viral marketing typology differentiating between viral marketing communications, unintended viral marketing and commercial viral marketing. This is still a rapidly evolving area and further research is clearly needed to monitor new developments and make sense of the radical changes these developments bring to the market
    corecore