598 research outputs found

    Anisotropic eddy-viscosity concept for strongly detached unsteady flows

    Get PDF
    The accurate prediction of the flow physics around bodies at high Reynolds number is a challenge in aerodynamics nowadays. In the context of turbulent flow modeling, recent advances like large eddy simulation (LES) and hybrid methods [detached eddy simulation (DES)] have considerably improved the physical relevance of the numerical simulation. However, the LES approach is still limited to the low-Reynolds-number range concerning wall flows. The unsteady Reynolds-averaged Navier–Stokes (URANS) approach remains a widespread and robust methodology for complex flow computation, especially in the near-wall region. Complex statistical models like second-order closure schemes [differential Reynolds stress modeling (DRSM)] improve the prediction of these properties and can provide an efficient simulationofturbulent stresses. Fromacomputational pointofview, the main drawbacks of such approaches are a higher cost, especially in unsteady 3-D flows and above all, numerical instabilities

    Crosstalk between H2A variant-specific modifications impacts vital cell functions

    Get PDF
    Selection of C-terminal motifs participated in evolution of distinct histone H2A variants. Hybrid types of variants combining motifs from distinct H2A classes are extremely rare. This suggests that the proximity between the motif cases interferes with their function. We studied this question in flowering plants that evolved sporadically a hybrid H2A variant combining the SQ motif of H2A.X that participates in the DNA damage response with the KSPK motif of H2A.W that stabilizes heterochromatin. Our inventory of PTMs of H2A.W variants showed that in vivo the cell cycle-dependent kinase CDKA phosphorylates the KSPK motif of H2A. W but only in absence of an SQ motif. Phosphomimicry of KSPK prevented DNA damage response by the SQ motif of the hybrid H2A.W/X variant. In a synthetic yeast expressing the hybrid H2A.W/X variant, phosphorylation of KSPK prevented binding of the BRCT-domain protein Mdb1 to phosphorylated SQ and impaired response to DNA damage. Our findings illustrate that PTMs mediate interference between the function of H2A variant specific C-terminal motifs. Such interference could explain the mutual exclusion of motifs that led to evolution of H2A variants.Fil: Schmücker, Anna. Austrian Academy Of Sciences (oaw);Fil: Lei, Bingkun. Austrian Academy Of Sciences (oaw);Fil: Lorkovic, Zdravko J.. Ludwig Maximilians Universitat; AlemaniaFil: Capella, Matias. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Braun, Sigurd. Ludwig Maximilians Universitat; AlemaniaFil: Bourguet, Pierre. Gregor Mendel Institute Of Molecular Plant Biology; Austria. Université Clermont Auvergne; FranciaFil: Mathieu, Olivier. Université Clermont Auvergne; FranciaFil: Mechtler, Karl. Gregor Mendel Institute Of Molecular Plant Biology; AustriaFil: Berger, Frédéric. Gregor Mendel Institute Of Molecular Plant Biology; Austri

    Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The G119S mutation responsible for insensitive acetylcholinesterase resistance to organophosphate and carbamate insecticides has recently been reported from natural populations of <it>Anopheles gambiae </it>in West Africa. These reports suggest there are costs of resistance associated with this mutation for <it>An. gambiae</it>, especially for homozygous individuals, and these costs could be influential in determining the frequency of carbamate resistance in these populations.</p> <p>Methods</p> <p>Life-history traits of the AcerKis and Kisumu strains of <it>An. gambiae </it>were compared following the manipulation of larval food availability in three separate experiments conducted in an insecticide-free laboratory environment. These two strains share the same genetic background, but differ in being homozygous for the presence or absence of the G119S mutation at the <it>ace-1 </it>locus, respectively.</p> <p>Results</p> <p>Pupae of the resistant strain were significantly more likely to die during pupation than those of the susceptible strain. Ages at pupation were significantly earlier for the resistant strain and their dry starved weights were significantly lighter; this difference in weight remained when the two strains were matched for ages at pupation.</p> <p>Conclusions</p> <p>The main cost of resistance found for <it>An. gambiae </it>mosquitoes homozygous for the G119S mutation was that they were significantly more likely to die during pupation than their susceptible counterparts, and they did so across a range of larval food conditions. Comparing the frequency of G119S in fourth instar larvae and adults emerging from the same populations would provide a way to test whether this cost of resistance is being expressed in natural populations of <it>An. gambiae </it>and influencing the dynamics of this resistance mutation.</p

    Differential Expression of Salivary Proteins between Susceptible and Insecticide-Resistant Mosquitoes of Culex quinquefasciatus

    Get PDF
    Background: The Culex quinquefasciatus mosquito, a major pest and vector of filariasis and arboviruses in the tropics, has developed multiple resistance mechanisms to the main insecticide classes currently available in public health. Among them, the insensitive acetylcholinesterase (ace-1(R) allele) is widespread worldwide and confers cross-resistance to organophosphates and carbamates. Fortunately, in an insecticide-free environment, this mutation is associated with a severe genetic cost that can affect various life history traits. Salivary proteins are directly involved in human-vector contact during biting and therefore play a key role in pathogen transmission. Methods and Results: An original proteomic approach combining 2D-electrophoresis and mass spectrometry was adopted to compare the salivary expression profiles of two strains of C. quinquefasciatus with the same genetic background but carrying either the ace-1(R) resistance allele or not (wild type). Four salivary proteins were differentially expressed (> 2 fold, P < 0.05) in susceptible (SLAB) and resistant (SR) mosquito strains. Protein identification indicated that the D7 long form, a major salivary protein involved in blood feeding success, presented lower expression in the resistant strain than the susceptible strain. In contrast, three other proteins, including metabolic enzymes (endoplasmin, triosephosphate isomerase) were significantly over-expressed in the salivary gland of ace-1(R) resistant mosquitoes. A catalogue of 67 salivary proteins of C. quinquefasciatus sialotranscriptome was also identified and described. Conclusion: The "resistance"-dependent expression of salivary proteins in mosquitoes may have considerable impact on biting behaviour and hence on the capacity to transmit parasites/viruses to humans. The behaviour of susceptible and insecticide-resistant mosquitoes in the presence of vertebrate hosts and its impact on pathogen transmission urgently requires further investigation

    Hereditary cataract in the Bengal cat in Poland

    Get PDF
    Background: This paper reports the significant prevalence of a presumed hereditary cataract in the Bengal cat breed in Poland. The nuclear part of the lens is affected and previous reports from Sweden and France for this type of feline cataract suggest that a recessive mode of inheritance is probably involved. Results: Presumed congenital or neonatal cataract involving the posterior nuclear part of each lens was initially diagnosed in a 12 month old male Bengal cat. As both parents and a sibling were also affected with cataract, a group of 18 related and 11 non-related cats was then subsequently examined. Eight related cats and one non- related cat were found to be similarly affected. A breed survey was then completed using an additional five centres across Poland and a further 190 related cats were examined. A total of 223 cats have been involved in this study, with 75 (33%) being affected with several types of cataract and 67 (30%) being specifically affected with the same or similar nuclear lesions. Eight cats (3.6%) presented with other cataract types and a prominence of the posterior lens suture lines was recorded in 65 cats unaffected with cataract (29%). There were no demonstrable vision problems. Neither age nor coat colour was significantly associated with the nuclear cataract, but the nuclear cataract group had a higher proportion of females than the unaffected group. Pedigree analysis has indicated probable inheritance as a recessive trait. Conclusions: These findings suggest that a presumably inherited nuclear cataract is present in the Bengal cat breed in Poland. It is considered to be either congenital or of very early onset, probably being inherited as a recessive trait. Although the lesion has no noticeable effect on vision, breeders in Poland and worldwide should be aware of the disease and clinical examination of young breeding stock prior to reproduction is advisable

    The Relationship between Population Structure and Aluminum Tolerance in Cultivated Sorghum

    Get PDF
    Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.CGIAR[G3007.04]McKnight FoundationFundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG)National Council for Scientific and Technological Development (CNPq

    Evidence of Introgression of the ace-1R Mutation and of the ace-1 Duplication in West African Anopheles gambiae s. s

    Get PDF
    Background: The role of inter-specific hybridisation is of particular importance in mosquito disease vectors for predicting the evolution of insecticide resistance. Two molecular forms of Anopheles gambiae s.s., currently recognized as S and M taxa, are considered to be incipient sibling species. Hybrid scarcity in the field was suggested that differentiation of M and S taxa is maintained by limited or absent gene flow. However, recent studies have revealed shared polymorphisms within the M and S forms, and a better understanding of the occurrence of gene flow is needed. One such shared polymorphism is the G119S mutation in the ace-1 gene (which is responsible for insecticide resistance); this mutation has been described in both the M and S forms of A. gambiae s.s. Methods and Results: To establish whether the G119S mutation has arisen independently in each form or by genetic introgression, we analysed coding and non-coding sequences of ace-1 alleles in M and S mosquitoes from representative field populations. Our data revealed many polymorphic sites shared by S and M forms, but no diversity was associated with the G119S mutation. These results indicate that the G119S mutation was a unique event and that genetic introgression explains the observed distribution of the G119S mutation within the two forms. However, it was impossible to determine from our data whether the mutation occurred first in the S form or in the M form. Unexpectedly, sequence analysis of some resistant individuals revealed a duplication of the ace-1 gene that was observed in both A. gambiae s.s. M and S forms. Again, the distribution of this duplication in the two forms most likely occurred through introgression. Conclusions: These results highlight the need for more research to understand the forces driving the evolution of insecticide resistance in malaria vectors and to regularly monitor resistance in mosquito populations of Africa

    Assortative Mating between European Corn Borer Pheromone Races: Beyond Assortative Meeting

    Get PDF
    BACKGROUND: Sex pheromone communication systems may be a major force driving moth speciation by causing behavioral reproductive isolation via assortative meeting of conspecific individuals. The 'E' and 'Z' pheromone races of the European corn borer (ECB) are a textbook example in this respect. 'Z' females produce and 'Z' males preferentially respond to a 'Z' pheromone blend, while the 'E' race communicates via an 'E' blend. Both races do not freely hybridize in nature and their populations are genetically differentiated. A straightforward explanation would be that their reproductive isolation is a mere consequence of "assortative meeting" resulting from their different pheromones specifically attracting males towards same-race females at long range. However, previous laboratory experiments and those performed here show that even when moths are paired in a small box - i.e., when the meeting between sexual partners is forced - inter-race couples still have a lower mating success than intra-race ones. Hence, either the difference in attractivity of E vs. Z pheromones for males of either race still holds at short distance or the reproductive isolation between E and Z moths may not only be favoured by assortative meeting, but must also result from an additional mechanism ensuring significant assortative mating at close range. Here, we test whether this close-range mechanism is linked to the E/Z female sex pheromone communication system. METHODOLOGY/PRINCIPAL FINDINGS: Using crosses and backcrosses of E and Z strains, we found no difference in mating success between full-sisters emitting different sex pheromones. Conversely, the mating success of females with identical pheromone types but different coefficients of relatedness to the two parental strains was significantly different, and was higher when their genetic background was closer to that of their male partner's pheromone race. CONCLUSIONS/SIGNIFICANCE: We conclude that the close-range mechanism ensuring assortative mating between the E and Z ECB pheromone races is unrelated to the difference in female sex pheromone. Although the nature of this mechanism remains elusive, our results show that it is expressed in females, acts at close range, segregates independently of the autosome carrying Pher and of both sex chromosomes, and is widely distributed since it occurs both in France and in the US
    corecore