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Nomenclature

a, aij = dimensionless and traceless form of Reynolds
stresses

Ci = �a and S principal direction misalignment criteria
CVi = �a and S advectable misalignment criteria
C� = eddy-diffusion coefficient
C�i = anisotropic eddy-diffusion coefficients
k = turbulent kinetic energy, uiui=2
S, Sij = mean strain tensor, 1
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�Si�jk = ith element of S spectral decomposition
Ui = mean flow velocity components
uiuj = turbulent stresses
vai = �a orthogonal normalized eigenvectors
vSi = S orthogonal normalized eigenvectors
�ij = Kronecker symbol
" = turbulence dissipation rate
� = mean flow/turbulent time-scale rate
�ai = �a classified by descending order eigenvalues
�Si = S classified by descending order eigenvalues
�t = scalar eddy viscosity
��td�i = directional eddy-viscosity components
�tt, ��tt�ij = tensorial eddy viscosity
�ij = mean rotation tensor, 1
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I. Introduction

T HE accurate prediction of the flow physics around bodies at
high Reynolds number is a challenge in aerodynamics

nowadays. In the context of turbulent flow modeling, recent
advances like large eddy simulation (LES) and hybrid methods
[detached eddy simulation (DES)] have considerably improved the
physical relevance of the numerical simulation. However, the LES
approach is still limited to the low-Reynolds-number range

concerning wall flows. The unsteady Reynolds-averaged Navier–
Stokes (URANS) approach remains a widespread and robust
methodology for complex flow computation, especially in the near-
wall region. Complex statistical models like second-order closure
schemes [differential Reynolds stress modeling (DRSM)] improve
the prediction of these properties and can provide an efficient
simulation of turbulent stresses. From a computational point of view,
the main drawbacks of such approaches are a higher cost, especially
in unsteady 3-D flows and above all, numerical instabilities.

The linear eddy-viscosity models (EVM) use the Boussinesq
approximation [1], which establishes a linear relation between the
Reynolds stresses and the strain rate by means of a scalar eddy-
viscosity concept, assuming a simple analogy with the relation
standing for the molecular viscosity. The Boussinesq law can be
written as follows under the incompressibility assumption:

�
uiuj
k
� 2

3
�ij ��aij � 2

�t
k
Sij (1)

The scalar eddy viscosity is often expressed by means of the
turbulence length and time scales as �t � C�k2=".

A direct consequence of the Boussinesq approximation is that the
principal directions of the two tensors �a and S always remain
collinear. This leads to an overproduction of turbulent kinetic energy
[2], which occurs especially in flow regions upstream of the
detachment, where the strain rate is high and the flow is laminar
([3,4], among others).

The class of nonlinear eddy-viscosity models (NLEVM) provides
modified behavior laws that attempt to overcome the limitations
mentioned. These laws are derived from a complete tensorial basis of
the turbulent stresses [5,6] involving quadratic or cubic
combinations of the strain and vorticity tensors. These laws are
derived from algebraic forms of the turbulent stresses issued from the
DRSM [7–9]. NLEVM use the scalar eddy-viscosity concept and
lead to modified diffusion terms in the momentum equations, whose
complexity increases with the higher-order terms involved in the
tensorial basis of the constitutive law. The explicit algebraic stress
models provide improved results for nonequilibrium flows [10],
among others. Their predictive capacity of complex unsteady flows
is still in progress (reported in [11,12]).

In the present paper, an alternative is suggested to derive a
tensorial eddy-viscosity model sensitized for stress-strain misalign-
ment and nonequilibrium turbulence. This approach, the Organized
Eddy Simulation, follows previous studies that reached the
prediction of massively detached unsteady turbulent flows around
bodies by a reconsideration of the eddy-diffusion coefficient in two-
equation models derived from DRSM [13–15]. This leads to a
reduction of the eddy-diffusion coefficient which allowed a relevant
prediction of the unsteady aerodynamic parameters, but this
approach only used Boussinesq law as a first step. To provide an
anisotropic analysis, which corresponds more to the flow physics,
especially in the region close to flow detachment, it is worthwhile to
extend the analysis by associating it with a directional criterion of
nonequilibrium. The nonequilibrium can be illustrated by means of
stress-strain misalignment [16], among other concepts, as well as by
the ratio of the mean flow time scale over the turbulence time scale
[8]. Both will be used in the present analysis. As discussed in this
paper, one of the expected results will be a reduction of the eddy-
diffusion coefficient, varying according to the nonequilibrium flow
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regions and the coherent flow structures, to reach an improved
prediction of the turbulence production in respect of theflowphysics.
The underlying models are DRSM and two-equation models. The
present developments are submitted to limitations coming from these
samemodels: a scalar dissipation rate and a unique length/time scale,
respectively.

To this end, a physical analysis of the stress-strain angles has been
carried out on the basis of a detailed high-Reynolds particle image
velocimetry (PIV) experiment concerning the incompressible flow
past a circular cylinder at Reynolds number 140,000 in high blockage
and aspect ratios [17]. The phase-averaged turbulence properties are
considered, allowing distinction of the organized coherent physical
process from the random turbulence. This experiment provides the
quantification of the stress-strain principal direction misalignments
in the near-wake region where turbulent equilibrium is not reached.
Furthermore, anisotropicmisalignment criteria are investigated and a
tensorial definition of the eddy viscosity is put forward, leading to a
new definition of the Reynolds stress constitutive law. Finally,
transport equations derived from the Speziale et al. second-order
closure scheme [18], are suggested to transport the misalignment
criteria.

II. Investigation of Stress-Strain Misalignment
via Phase-Averaged 3C-PIV Measurements

in the Cylinder Wake

The near-periodic nature of the flow, due to the von Kármán
vortices, allows the definition of a phase and the calculation of phase-
averaged quantities. The procedure used is reported in [17]. In the
present study, the median plan has been considered at half distance
spanwise and located in the near-wake region. The phase-averaged
decomposition is adopted for the whole analysis.

The angles between the principal directions of the strain rate and
turbulence anisotropy tensors are quantified. The main coherent
vortex regions are delimited by the Q criterion [19]. The first
principal directions of each tensor are represented in Fig. 1a. In
specific flow regions their misalignment becomes predominant. The
largest misalignment is observed near the vortex center (x1=D� 1,
x2=D� 0:03) in Fig. 1a. It decreases progressively and the best
alignment is reached near the saddle point (x1=D� 1:18,
x2=D� 0:5) and in free-shear flow regions.

In Fig. 1b the angle between the directions of va1 and vS1 is
represented for given ordinates (cf. bold lines in Fig. 1a). Solid and
dashed-dotted curves (x2=D��0:21 and x2=D��0:06, respec-
tively) confirm the misalignment peak near the vortex center (up to
50 deg around x1=D� 1), whereas the dashed curve (x2=D� 0:39)
illustrates a quasi alignment near the saddle point and in free-flow
regions (beyond x1=D� 1:5).

III. Towards an Anisotropic First-Order
Eddy-Viscosity Model

A. Misalignment Estimation Criterion

To monitor the real misalignment between the three principal
directions of the two tensors, a local evaluation of all eigenvalues and
vectors is necessary. Unfortunately, such a computation implies an
assumed knowledge about the two tensors, whereas the purpose of
these angle evaluations is to include the misalignment effect in the
Reynolds stress estimation. For this reason, a misalignment criterion
has to be defined. This criterion must 1) give anisotropic information
about tensor misalignment in each space direction, which means an
evaluation of eigenvector correlations, and 2) be “advectable”
through a specific transport equation that can be derived fromDRSM
as suggested in the preceding section.

Without any estimation of the eigenvectors of �a, the correlation
rates between �avSi and vSi provide sufficient information about the
alignment between the principal directions of�a and vSi , which leads
to the following criterion definition:

Ci ��
ajk

�
vSi

�
k

�
vSi

�
j

kavSi k
for i� 1; 2; 3 (2)

where k:k is the Euclidian norm.
As can be shown in the present experiment, the criterion decreases

in highly strained shear flow regions and especially near the vortex
center, whereas it remains maximum when the two principal
tensorial directions are aligned.

B. Tensorial Eddy-Viscosity Model

The three coefficientsCi provide anisotropic knowledge about the
degree of linearity existing between Reynolds and the mean strain
tensors. This to be so, even if the two tensors are aligned in one
direction, a misalignment in another direction implies a nonlinearity
between the tensors, it is relevant to consider the individual
contribution of each element of a spectral decomposition that is
applied to the strain-rate tensor.Moreover, according to other studies
such as [8], for instance, �� kkSk

"
mean flow/turbulent time-scale rate

emphasizes the nonequilibrium turbulence regions. Whenever � is
higher than 3.3 approximately, the nonequilibrium turbulence
becomes predominant.

The following definition of an anisotropic eddy-diffusion
coefficient can be suggested by an extension of the scalar C�
definition, for i� 1, 2, 3:

C�i �
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(3)
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Fig. 1 a) �a (dashed) and S (solid) first principal directions and Q

criterion isocontours at phase ’� 50 deg. b) Angle variation between
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where
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Therefore, a positive directional eddy viscosity can be defined as
follows:

��td�i � jCVijk (5)

Taking the previous analysis concerning the stress-strain
misalignment into account, a consistent definition of the eddy-
viscosity as a symmetric tensor is suggested:

��tt�ij � ��td�k
�
vSk

�
i

�
vSk

�
j

(6)

Equation (6) leads to a weighted summation of S spectral
decomposition:

Sik��tt�kj � ��td�l�Sl
�
vSl

�
i

�
vSl

�
j
� ��td�l�Sl�ij (7)

Furthermore, if the eddy viscosity is regarded as a 3 � 3 tensor, the
linear EVM behavior law can be generalized as

� uiuj �
2

3
k�ij � 2Sik��tt�kj �

2

3
R�ij (8)

where R� ��td�i�Si is the trace of Sik��tt�kj. From Eq. (7), the
symmetry property of the turbulence anisotropy tensor is ensured.
� 2

3
R�ij term provides Eq. (8) validity when summing uiui.

Equation (8) leads to the following generalization of averaged
Navier–Stokes momentum equations:
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The EVM suggested in (8) is no longer linear because �tt depends
on local directional flow characteristics and on �. The tensorial
definition enables a selective reduction of the effect of one (or more)
elements of the strain-rate spectral decomposition with respect to the
corresponding physical alignment (or misalignment) between the
associated principal directions. Moreover, if a perfect alignment is
observed in an equilibrium and isotropic strain region, that is
to say j�S1 j � j�S2 j � j�S3 j, then ��td�i � �t for all i, Sik��tt�kj�
�t�

S
l �vSl �i�vSl �j � �tSij, and R� �t�Si � 0, which means that the

tensorial expression degenerates into a classical Boussinesq-like
scalar model.

A comparison between Reynolds stresses evaluated from the PIV
experiment and from modeling via (8) and measured stress tensor is
shown in Fig. 2. Despite slight differences in shear flow regions, the
modeled quantities present a good match with the experiment for
both normal and shear Reynolds stresses. This is verified over the
whole period of the vortex shedding (Fig. 3). The new model
provides quite a good comparison with the experimental results. It
can be remembered that considerable discrepancies occur through
Boussinesq-based two-equation models, especially for the shear
stress prediction in the near-wall and near-wake regions, as
mentioned in [11,12]. Therefore, the presentmodel gives satisfactory
results for a physical experiment that allows accessing detailed fields
of turbulence quantities relevant to the flow physics. This is an
intermediate phase of the study related to the present model that
could be implemented in computational fluid dynamics (CFD) codes
in comparison with other behavior laws issued from nonlinear
modeling.

C. Transport Equations for the Misalignment Criteria

To transport these coefficients as new variables of the physical
system, three advection equations can be derived from the DRSM
model by Speziale, Sarkar, and Gatski (SSGmodel) [18]. For q� 1,
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2, 3,
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where �Vq�ij � �vSq�i�vSq�j.
By using the SSG model for the pressure/strain-rate correlation in

a similar way as [20] for a nondirectional misalignment, the
expression (10) leads to the following equations:
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where DCVq , the diffusion term, can be approximated by
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IIa � aijaij, and the seven constants ci and c�i are those determined
by Speziale et al. [18].
DCVq is a suggestion for modeling the diffusive term of CVq

coefficients combining viscous and turbulent diffusion contribu-
tions. Assuming a similarity with the diffusion term of k transport
equation, �CVq coefficient can be set, firstly, to the value of 1.

IV. Conclusions

The present study quantifies the existence of a strong
misalignment between the phase-averaged turbulence stresses and
the strain-rate tensor in the coherent vortices and in the highly
sheared regions downstream of the separation. A transportable
misalignment angle criterion is suggested in a general form,
consistent in three dimensions. This yields an anisotropic tensorial
eddy-viscosity concept sensitized in respect of the nonequilibrium
turbulence. A good match between the modeled turbulence stresses
and the experimental results under the phase-averaged decom-
position is reached. This is an ongoing study which aims at
investigating anisotropic nonequilibrium criteria for turbulence
modeling of highly detached unsteady flows.
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