10 research outputs found

    Evaluation des effets chroniques du diclofénac sur un mollusque gastéropode avec des approches physiologiques, comportementales, transcriptomiques et métabolomiques

    Get PDF
    La contamination environnementale par les mĂ©dicaments est devenue une prĂ©occupation majeure cette derniĂšre dĂ©cennie. Parmi ces mĂ©dicaments, le diclofĂ©nac (DCF) est l'une des molĂ©cules mĂ©dicamenteuses les plus consommĂ©es et les plus rĂ©guliĂšrement identifiĂ©es dans l'environnement aquatique. De nombreuses Ă©tudes Ă©cotoxicologiques se sont intĂ©ressĂ©es aux effets de cette molĂ©cule sur les espĂšces aquatiques, marines et dulcicoles, montrant notamment un impact sur la reproduction. Cependant, les Ă©tudes chroniques conduites Ă  concentrations environnementales chez des invertĂ©brĂ©s aquatiques sont peu nombreuses, et les mĂ©canismes molĂ©culaires mis en jeu dans les effets observĂ©s sont peu compris. Cette thĂšse a pour objectif d'Ă©valuer l'impact du DCF Ă  concentrations environnementales aprĂšs une exposition multigĂ©nĂ©rationnelle chez un gastĂ©ropode d'eau douce, Lymnaea stagnalis. Dans ce but, des approches physiologiques, comportementales et molĂ©culaires ont Ă©tĂ© mises en oeuvre. Les produits de biotransformation du DCF formĂ©s chez L. stagnalis aprĂšs une exposition de 3 et 7 jours Ă  300 ”g/L ont Ă©tĂ© explorĂ©s. Puis une Ă©tude multigĂ©nĂ©rationnelle a Ă©tĂ© conduite sur 3 gĂ©nĂ©rations de limnĂ©es exposĂ©es Ă  0,1 ; 2 et 10 ”g/L de DCF en explorant l'impact de ce contaminant sur des paramĂštres physiologiques (Ă©closion des oeufs, croissance, reproduction) et comportementaux (alimentation, locomotion, rĂ©ponses au stress lumineux). La gĂ©nĂ©ration parentale exposĂ©e Ă  0,1 et 10 ”g/L a fait l'objet d'une analyse molĂ©culaire au stade adulte sur deux organes (tĂȘtes et appareils reproducteurs). L'Ă©tude du mĂ©tabolisme du DCF chez la limnĂ©e a permis de mettre en Ă©vidence 19 mĂ©tabolites du DCF, dont 14 de phase I et 4 de phase II. Parmi ces mĂ©tabolites, 12 n'avaient jamais Ă©tĂ© observĂ©s chez une espĂšce aquatique. L'hydroxylation semble ĂȘtre une voie majeure de biotransformation chez cet organisme, avec l'identification de 3 mĂ©tabolites hydroxylĂ©s et 3 dihydroxylĂ©s. Lors de l'exposition chronique au DCF, l'Ă©closion a Ă©tĂ© impactĂ©e par le DCF uniquement dans la gĂ©nĂ©ration F2, avec une Ă©closion des pontes plus rapide (10 ”g/L). La croissance des juvĂ©niles a Ă©tĂ© plus rapide pour la gĂ©nĂ©ration parentale (F0) et la gĂ©nĂ©ration F2 exposĂ©es Ă  toutes les concentrations de DCF ainsi que dans la F1 exposĂ©e Ă  0,1 ”g/L. Au contraire, pour la F1 exposĂ©e Ă  2 et 10 ”g/L, la croissance a Ă©tĂ© plus lente. La production de ponte n'a pas Ă©tĂ© touchĂ©e par une exposition au DCF dans la gĂ©nĂ©ration parentale, tandis qu'un plus faible nombre d'oeufs par ponte a Ă©tĂ© observĂ© chez la F1 (2 ”g/L) et une quantitĂ© de pontes plus importante a Ă©tĂ© produite par individus dans la F2 (10 ”g/L). Le DCF a diminuĂ© la prise alimentaire chez les juvĂ©niles de la F0 (2 ”g/L) et les adultes de la F1 (0,1 et 2 ”g/L), tandis qu'il l'a augmentĂ©e chez les adultes de la F2 (10 ”g/L). Le DCF a stimulĂ© le comportement locomoteur chez les individus de la F1 (2 et 10 ”g/L). Le DCF n'a pas eu d'effet sur la rĂ©ponse au stress lumineux. Les approches molĂ©culaires non ciblĂ©es (transcriptomique, mĂ©tabolomique) conduites chez les adultes de la gĂ©nĂ©ration F0 suggĂšrent l'induction de neurotoxicitĂ©, d'un stress oxydant et un dĂ©sĂ©quilibre immunitaire. L'osmorĂ©gulation pourrait Ă©galement ĂȘtre altĂ©rĂ©e, ainsi que le mĂ©tabolisme Ă©nergĂ©tique et la reproduction. Cet impact potentiel sur la reproduction n'a pas Ă©tĂ© mis en Ă©vidence sur la gĂ©nĂ©ration F0 lors des tests de reproduction mais l'a Ă©tĂ© sur la descendance, confirmant le potentiel des marqueurs molĂ©culaires comme indicateurs prĂ©coces d'effet. L'ensemble de ces rĂ©sultats nous permet d'avoir une vision plus large des effets chroniques du DCF sur l'environnement aquatique.Pharmaceuticals environmental contamination provoked an increase of concern over the past decade. Among these drugs, diclofenac (DCF) is one of the most consumed and identified in the aquatic environment. Multiple ecotoxicological studies have investigated these contaminant effects on marine and freshwater aquatic species, showing mostly a reproduction impact. However, only a few chronic studies at environmental concentrations has been conducted on aquatic invertebrates, and the molecular mechanisms involved in the effects that have been observed are poorly understood. This thesis aimed to assess DCF impact at environmental concentrations after a multigenerational exposure in the Lymnaea stagnalis freshwater gastropod. For this purpose, physiological, behavioral and molecular approaches were implemented. DCF biotransformation products formed in L. stagnalis after 3 and 7 days of exposure at 300 ”g/L were explored. A multigenerational study was then conducted on 3 generations of snails exposed to 0.1, 2 and 10 ”g/L DCF concentrations. This contaminant impact was explored on physiological (egg hatching, growth, reproduction) and behavioral (feeding, locomotion, light stress response) parameters. The parental generation exposed to 0.1 and 10 ”g/L was analyzed molecularly at the adult stage on 2 organs (heads and reproductive apparatus). The DCF metabolism study in L. stagnalis snail revealed 19 DCF metabolites, 14 of which were phase I and 4 were phase II. Among these metabolites, 12 were observed for the first time in aquatic species. The major biotransformation pathway in this organism appeared to be hydroxylation, with 3 hydroxylated and 3 dihydroxylated identified metabolites. During the chronic DCF exposure, hatching was affected by DCF only in the F2 generation, with a faster egg hatching (10 ”g/L). The juvenile growth was faster in the parental generation (F0) and in the F2 generation at all DCF concentrations, as well as in the F1 exposed to 0.1 ”g/L. On the contrary, the growth was slower in the F1 exposed to 2 and 10 ”g/L. The egg masses production was not impacted by the DCF exposure in the parental generation, while a lower number of eggs per egg mass was observed in the F1 (2 ”g/L) and a higher number of egg masses was produced per snail in the F2 (10 ”g/L). DCF lowered the feeding rate in the F0 juveniles (2 ”g/L) and in the F1 adults (0.1 and 2 ”g/L), whereas it increased it in the F2 adults (10 ”g/L). DCF stimulated locomotor behavior in F1 individuals (2 and 10 ”g/L). DCF did not affect the light stress response. The non-targeted molecular approaches (transcriptomic, metabolomics) conducted on the F0 adult snails suggested neurotoxicity, oxidative stress and immunity imbalance induction. Osmoregulation could be altered, as well as the energy metabolism and the reproduction. This potential impact of DCF on reproduction was not highlighted in the F0 generation reproduction test but was demonstrated on the offspring, thus confirming the molecular markers potential to be early effects indicators. All these results allow us to have a larger view of DCF chronic effects on the aquatic environment

    Evaluation des effets chroniques du diclofénac sur un mollusque gastéropode avec des approches physiologiques, comportementales, transcriptomiques et métabolomiques

    No full text
    Pharmaceuticals environmental contamination provoked an increase of concern over the past decade. Among these drugs, diclofenac (DCF) is one of the most consumed and identified in the aquatic environment. Multiple ecotoxicological studies have investigated these contaminant effects on marine and freshwater aquatic species, showing mostly a reproduction impact. However, only a few chronic studies at environmental concentrations has been conducted on aquatic invertebrates, and the molecular mechanisms involved in the effects that have been observed are poorly understood. This thesis aimed to assess DCF impact at environmental concentrations after a multigenerational exposure in the Lymnaea stagnalis freshwater gastropod. For this purpose, physiological, behavioral and molecular approaches were implemented. DCF biotransformation products formed in L. stagnalis after 3 and 7 days of exposure at 300 ”g/L were explored. A multigenerational study was then conducted on 3 generations of snails exposed to 0.1, 2 and 10 ”g/L DCF concentrations. This contaminant impact was explored on physiological (egg hatching, growth, reproduction) and behavioral (feeding, locomotion, light stress response) parameters. The parental generation exposed to 0.1 and 10 ”g/L was analyzed molecularly at the adult stage on 2 organs (heads and reproductive apparatus). The DCF metabolism study in L. stagnalis snail revealed 19 DCF metabolites, 14 of which were phase I and 4 were phase II. Among these metabolites, 12 were observed for the first time in aquatic species. The major biotransformation pathway in this organism appeared to be hydroxylation, with 3 hydroxylated and 3 dihydroxylated identified metabolites. During the chronic DCF exposure, hatching was affected by DCF only in the F2 generation, with a faster egg hatching (10 ”g/L). The juvenile growth was faster in the parental generation (F0) and in the F2 generation at all DCF concentrations, as well as in the F1 exposed to 0.1 ”g/L. On the contrary, the growth was slower in the F1 exposed to 2 and 10 ”g/L. The egg masses production was not impacted by the DCF exposure in the parental generation, while a lower number of eggs per egg mass was observed in the F1 (2 ”g/L) and a higher number of egg masses was produced per snail in the F2 (10 ”g/L). DCF lowered the feeding rate in the F0 juveniles (2 ”g/L) and in the F1 adults (0.1 and 2 ”g/L), whereas it increased it in the F2 adults (10 ”g/L). DCF stimulated locomotor behavior in F1 individuals (2 and 10 ”g/L). DCF did not affect the light stress response. The non-targeted molecular approaches (transcriptomic, metabolomics) conducted on the F0 adult snails suggested neurotoxicity, oxidative stress and immunity imbalance induction. Osmoregulation could be altered, as well as the energy metabolism and the reproduction. This potential impact of DCF on reproduction was not highlighted in the F0 generation reproduction test but was demonstrated on the offspring, thus confirming the molecular markers potential to be early effects indicators. All these results allow us to have a larger view of DCF chronic effects on the aquatic environment.La contamination environnementale par les mĂ©dicaments est devenue une prĂ©occupation majeure cette derniĂšre dĂ©cennie. Parmi ces mĂ©dicaments, le diclofĂ©nac (DCF) est l'une des molĂ©cules mĂ©dicamenteuses les plus consommĂ©es et les plus rĂ©guliĂšrement identifiĂ©es dans l'environnement aquatique. De nombreuses Ă©tudes Ă©cotoxicologiques se sont intĂ©ressĂ©es aux effets de cette molĂ©cule sur les espĂšces aquatiques, marines et dulcicoles, montrant notamment un impact sur la reproduction. Cependant, les Ă©tudes chroniques conduites Ă  concentrations environnementales chez des invertĂ©brĂ©s aquatiques sont peu nombreuses, et les mĂ©canismes molĂ©culaires mis en jeu dans les effets observĂ©s sont peu compris. Cette thĂšse a pour objectif d'Ă©valuer l'impact du DCF Ă  concentrations environnementales aprĂšs une exposition multigĂ©nĂ©rationnelle chez un gastĂ©ropode d'eau douce, Lymnaea stagnalis. Dans ce but, des approches physiologiques, comportementales et molĂ©culaires ont Ă©tĂ© mises en oeuvre. Les produits de biotransformation du DCF formĂ©s chez L. stagnalis aprĂšs une exposition de 3 et 7 jours Ă  300 ”g/L ont Ă©tĂ© explorĂ©s. Puis une Ă©tude multigĂ©nĂ©rationnelle a Ă©tĂ© conduite sur 3 gĂ©nĂ©rations de limnĂ©es exposĂ©es Ă  0,1 ; 2 et 10 ”g/L de DCF en explorant l'impact de ce contaminant sur des paramĂštres physiologiques (Ă©closion des oeufs, croissance, reproduction) et comportementaux (alimentation, locomotion, rĂ©ponses au stress lumineux). La gĂ©nĂ©ration parentale exposĂ©e Ă  0,1 et 10 ”g/L a fait l'objet d'une analyse molĂ©culaire au stade adulte sur deux organes (tĂȘtes et appareils reproducteurs). L'Ă©tude du mĂ©tabolisme du DCF chez la limnĂ©e a permis de mettre en Ă©vidence 19 mĂ©tabolites du DCF, dont 14 de phase I et 4 de phase II. Parmi ces mĂ©tabolites, 12 n'avaient jamais Ă©tĂ© observĂ©s chez une espĂšce aquatique. L'hydroxylation semble ĂȘtre une voie majeure de biotransformation chez cet organisme, avec l'identification de 3 mĂ©tabolites hydroxylĂ©s et 3 dihydroxylĂ©s. Lors de l'exposition chronique au DCF, l'Ă©closion a Ă©tĂ© impactĂ©e par le DCF uniquement dans la gĂ©nĂ©ration F2, avec une Ă©closion des pontes plus rapide (10 ”g/L). La croissance des juvĂ©niles a Ă©tĂ© plus rapide pour la gĂ©nĂ©ration parentale (F0) et la gĂ©nĂ©ration F2 exposĂ©es Ă  toutes les concentrations de DCF ainsi que dans la F1 exposĂ©e Ă  0,1 ”g/L. Au contraire, pour la F1 exposĂ©e Ă  2 et 10 ”g/L, la croissance a Ă©tĂ© plus lente. La production de ponte n'a pas Ă©tĂ© touchĂ©e par une exposition au DCF dans la gĂ©nĂ©ration parentale, tandis qu'un plus faible nombre d'oeufs par ponte a Ă©tĂ© observĂ© chez la F1 (2 ”g/L) et une quantitĂ© de pontes plus importante a Ă©tĂ© produite par individus dans la F2 (10 ”g/L). Le DCF a diminuĂ© la prise alimentaire chez les juvĂ©niles de la F0 (2 ”g/L) et les adultes de la F1 (0,1 et 2 ”g/L), tandis qu'il l'a augmentĂ©e chez les adultes de la F2 (10 ”g/L). Le DCF a stimulĂ© le comportement locomoteur chez les individus de la F1 (2 et 10 ”g/L). Le DCF n'a pas eu d'effet sur la rĂ©ponse au stress lumineux. Les approches molĂ©culaires non ciblĂ©es (transcriptomique, mĂ©tabolomique) conduites chez les adultes de la gĂ©nĂ©ration F0 suggĂšrent l'induction de neurotoxicitĂ©, d'un stress oxydant et un dĂ©sĂ©quilibre immunitaire. L'osmorĂ©gulation pourrait Ă©galement ĂȘtre altĂ©rĂ©e, ainsi que le mĂ©tabolisme Ă©nergĂ©tique et la reproduction.[...

    Evaluation of diclofenac chronic effects on a gastropod mollusk with physiological, behavioral, transcriptomic and metabolomic approaches

    No full text
    La contamination environnementale par les mĂ©dicaments est devenue une prĂ©occupation majeure cette derniĂšre dĂ©cennie. Parmi ces mĂ©dicaments, le diclofĂ©nac (DCF) est l'une des molĂ©cules mĂ©dicamenteuses les plus consommĂ©es et les plus rĂ©guliĂšrement identifiĂ©es dans l'environnement aquatique. De nombreuses Ă©tudes Ă©cotoxicologiques se sont intĂ©ressĂ©es aux effets de cette molĂ©cule sur les espĂšces aquatiques, marines et dulcicoles, montrant notamment un impact sur la reproduction. Cependant, les Ă©tudes chroniques conduites Ă  concentrations environnementales chez des invertĂ©brĂ©s aquatiques sont peu nombreuses, et les mĂ©canismes molĂ©culaires mis en jeu dans les effets observĂ©s sont peu compris. Cette thĂšse a pour objectif d'Ă©valuer l'impact du DCF Ă  concentrations environnementales aprĂšs une exposition multigĂ©nĂ©rationnelle chez un gastĂ©ropode d'eau douce, Lymnaea stagnalis. Dans ce but, des approches physiologiques, comportementales et molĂ©culaires ont Ă©tĂ© mises en oeuvre. Les produits de biotransformation du DCF formĂ©s chez L. stagnalis aprĂšs une exposition de 3 et 7 jours Ă  300 ”g/L ont Ă©tĂ© explorĂ©s. Puis une Ă©tude multigĂ©nĂ©rationnelle a Ă©tĂ© conduite sur 3 gĂ©nĂ©rations de limnĂ©es exposĂ©es Ă  0,1 ; 2 et 10 ”g/L de DCF en explorant l'impact de ce contaminant sur des paramĂštres physiologiques (Ă©closion des oeufs, croissance, reproduction) et comportementaux (alimentation, locomotion, rĂ©ponses au stress lumineux). La gĂ©nĂ©ration parentale exposĂ©e Ă  0,1 et 10 ”g/L a fait l'objet d'une analyse molĂ©culaire au stade adulte sur deux organes (tĂȘtes et appareils reproducteurs). L'Ă©tude du mĂ©tabolisme du DCF chez la limnĂ©e a permis de mettre en Ă©vidence 19 mĂ©tabolites du DCF, dont 14 de phase I et 4 de phase II. Parmi ces mĂ©tabolites, 12 n'avaient jamais Ă©tĂ© observĂ©s chez une espĂšce aquatique. L'hydroxylation semble ĂȘtre une voie majeure de biotransformation chez cet organisme, avec l'identification de 3 mĂ©tabolites hydroxylĂ©s et 3 dihydroxylĂ©s. Lors de l'exposition chronique au DCF, l'Ă©closion a Ă©tĂ© impactĂ©e par le DCF uniquement dans la gĂ©nĂ©ration F2, avec une Ă©closion des pontes plus rapide (10 ”g/L). La croissance des juvĂ©niles a Ă©tĂ© plus rapide pour la gĂ©nĂ©ration parentale (F0) et la gĂ©nĂ©ration F2 exposĂ©es Ă  toutes les concentrations de DCF ainsi que dans la F1 exposĂ©e Ă  0,1 ”g/L. Au contraire, pour la F1 exposĂ©e Ă  2 et 10 ”g/L, la croissance a Ă©tĂ© plus lente. La production de ponte n'a pas Ă©tĂ© touchĂ©e par une exposition au DCF dans la gĂ©nĂ©ration parentale, tandis qu'un plus faible nombre d'oeufs par ponte a Ă©tĂ© observĂ© chez la F1 (2 ”g/L) et une quantitĂ© de pontes plus importante a Ă©tĂ© produite par individus dans la F2 (10 ”g/L). Le DCF a diminuĂ© la prise alimentaire chez les juvĂ©niles de la F0 (2 ”g/L) et les adultes de la F1 (0,1 et 2 ”g/L), tandis qu'il l'a augmentĂ©e chez les adultes de la F2 (10 ”g/L). Le DCF a stimulĂ© le comportement locomoteur chez les individus de la F1 (2 et 10 ”g/L). Le DCF n'a pas eu d'effet sur la rĂ©ponse au stress lumineux. Les approches molĂ©culaires non ciblĂ©es (transcriptomique, mĂ©tabolomique) conduites chez les adultes de la gĂ©nĂ©ration F0 suggĂšrent l'induction de neurotoxicitĂ©, d'un stress oxydant et un dĂ©sĂ©quilibre immunitaire. L'osmorĂ©gulation pourrait Ă©galement ĂȘtre altĂ©rĂ©e, ainsi que le mĂ©tabolisme Ă©nergĂ©tique et la reproduction.[...]Pharmaceuticals environmental contamination provoked an increase of concern over the past decade. Among these drugs, diclofenac (DCF) is one of the most consumed and identified in the aquatic environment. Multiple ecotoxicological studies have investigated these contaminant effects on marine and freshwater aquatic species, showing mostly a reproduction impact. However, only a few chronic studies at environmental concentrations has been conducted on aquatic invertebrates, and the molecular mechanisms involved in the effects that have been observed are poorly understood. This thesis aimed to assess DCF impact at environmental concentrations after a multigenerational exposure in the Lymnaea stagnalis freshwater gastropod. For this purpose, physiological, behavioral and molecular approaches were implemented. DCF biotransformation products formed in L. stagnalis after 3 and 7 days of exposure at 300 ”g/L were explored. A multigenerational study was then conducted on 3 generations of snails exposed to 0.1, 2 and 10 ”g/L DCF concentrations. This contaminant impact was explored on physiological (egg hatching, growth, reproduction) and behavioral (feeding, locomotion, light stress response) parameters. The parental generation exposed to 0.1 and 10 ”g/L was analyzed molecularly at the adult stage on 2 organs (heads and reproductive apparatus). The DCF metabolism study in L. stagnalis snail revealed 19 DCF metabolites, 14 of which were phase I and 4 were phase II. Among these metabolites, 12 were observed for the first time in aquatic species. The major biotransformation pathway in this organism appeared to be hydroxylation, with 3 hydroxylated and 3 dihydroxylated identified metabolites. During the chronic DCF exposure, hatching was affected by DCF only in the F2 generation, with a faster egg hatching (10 ”g/L). The juvenile growth was faster in the parental generation (F0) and in the F2 generation at all DCF concentrations, as well as in the F1 exposed to 0.1 ”g/L. On the contrary, the growth was slower in the F1 exposed to 2 and 10 ”g/L. The egg masses production was not impacted by the DCF exposure in the parental generation, while a lower number of eggs per egg mass was observed in the F1 (2 ”g/L) and a higher number of egg masses was produced per snail in the F2 (10 ”g/L). DCF lowered the feeding rate in the F0 juveniles (2 ”g/L) and in the F1 adults (0.1 and 2 ”g/L), whereas it increased it in the F2 adults (10 ”g/L). DCF stimulated locomotor behavior in F1 individuals (2 and 10 ”g/L). DCF did not affect the light stress response. The non-targeted molecular approaches (transcriptomic, metabolomics) conducted on the F0 adult snails suggested neurotoxicity, oxidative stress and immunity imbalance induction. Osmoregulation could be altered, as well as the energy metabolism and the reproduction. This potential impact of DCF on reproduction was not highlighted in the F0 generation reproduction test but was demonstrated on the offspring, thus confirming the molecular markers potential to be early effects indicators. All these results allow us to have a larger view of DCF chronic effects on the aquatic environment

    Exposition chronique au diclofénac de Lymnaea stagnalis, un gastéropode d'eau douce : Impact sur l'éclosion des embryons et sur la croissance des juvéniles

    No full text
    National audienceLe diclofĂ©nac est un anti-inflammatoire non stĂ©roĂŻdien largement utilisĂ© en France, avec une vente de mĂ©dicaments remboursĂ©s reprĂ©sentant 30 tonnes de principe actif en 2016. Cette molĂ©cule Ă©tant faiblement dĂ©gradĂ©e au niveau des stations d'Ă©puration par les traitements classiques, elle fait partie des polluants Ă©mergents des milieux aquatiques. En effet, le diclofĂ©nac est retrouvĂ© Ă  des concentrations allant du ng/L au ”g/L dans les eaux de surface, ce qui pourrait impacter la faune aquatique. Des Ă©tudes montrant un effet de ce mĂ©dicament sur les organismes vivant en eau douce ont dĂ©jĂ  Ă©tĂ© rĂ©alisĂ©es, cependant il reste nĂ©cessaire d'obtenir plus d'informations sur les consĂ©quences Ă  long terme du diclofĂ©nac aux concentrations environnementales. L’objectif de cette Ă©tude est de mieux caractĂ©riser les effets du diclofĂ©nac Ă  long terme et Ă  concentration environnementale sur Lymnaea stagnalis, un mollusque gastĂ©ropode d’eau douce. Le taux d’éclosion des pontes et la taille et le poids des juvĂ©niles ont Ă©tĂ© mesurĂ©s

    Metabolism of the aquatic pollutant diclofenac in the Lymnaea stagnalis freshwater gastropod

    No full text
    International audienceThe metabolism of organic contaminants in Lymnaea stagnalis freshwater gastropod remains unknown. Yet, pharmaceuticals—like the NSAID diclofenac—are continuously released in the aquatic environment, thereby representing a risk to aquatic organisms. In addition, lower invertebrates may be affected by this pollution since they are likely to bioaccumulate contaminants. The metabolism of pharmaceuticals in L. stagnalis requires further investigation to understand their detoxification mechanisms and characterized the risk posed by contaminant exposure in this species. In this study, a non-targeted strategy using liquid chromatography combined with high-resolution mass spectrometry was applied to highlight metabolites formed in L. stagnalis freshwater snails exposed to 300 Όg/L diclofenac for 3 and 7 days. Nineteen metabolites were revealed by this approach, 12 of which were observed for the first time in an aquatic organism exposed to diclofenac. Phase I metabolism involved hydroxylation, with detection of 3’-, 4’-, and 5-hydroxydiclofenac and three dihydroxylated metabolites, as well as cyclization, oxidative decarboxylation, and dehydrogenation, while phase II metabolism consisted of glucose and sulfate conjugation. Among these reactions, the two main DCF detoxification pathways detected in L. stagnalis were hydroxylation (phase I) and glucosidation (phase II)

    Multigenerational responses in the Lymnaea stagnalis freshwater gastropod exposed to diclofenac at environmental concentrations

    No full text
    International audienceOver the last decade, there has been increased concern about the occurrence of diclofenac (DCF) in aquatic ecosystems. Living organisms could be exposed to this “pseudo-persistent” pharmaceutical for more than one generation. In this multigenerational study, we assessed the DCF impact at environmentally relevant concentrations on the life history and behavioral parameters of two offspring generations (F1 and F2) of the Lymnaea stagnalis freshwater gastropod. Snail growth was affected by DCF in the F1 generation, with increased shell sizes of juveniles exposed to 0.1 ÎŒg L 1 concentration and a decreased shell size at 2 and 10 ÎŒg L 1. DCF also lowered food intake, enhanced locomotion activity and reduced the number of eggs/egg mass in the F1 generation. For the F2 generation, shorter time to hatch, faster growth, increased food intake and production of more egg masses/snail were induced by DCF exposure at 10 ÎŒg L 1. Over time, DCF exposure led to maximization of L. stagnalis reproductive function. These results show that multigenerational studies are crucial to reveal adaptive responses to chronic contaminant exposure, which are not observable after short-term exposure

    Chronic effects of diclofenac on a freshwater gastropod, Lymnaea stagnalis

    No full text
    International audienceNon-steroidal anti-inflammatory drugs (NSAIDs) are a particularly well-represented drug class in traces of drugs found in surface waters. Among these drugs, diclofenac is one of the most prescribed and consumed NSAIDs with healthy use against pains and symptoms induced by chronic inflammatory diseases. In Europe, concentrations noticed in freshwater range from few ng/L to 15 ”g/L for the most important concentration detected. In aquatic ecotoxicology, a lot of studies have been conducted on fish showing an impact of low-ranges concentrations of diclofenac on neurotransmitter, on feeding behaviour, on reproduction and hatching. There is also studies on aquatic invertebrates and most of them were conducted on marine bivalves showing a diclofenac impact on metabolism, fertilization, immunity, embryo development, growth
 Compared to study on marine invertebrate and on fish, the impact of diclofenac on freshwater gastropods has been only scarcely explored. The aim of this study is to provide information on chronic effects of environmental concentrations of diclofenac on a freshwater mollusk, Lymnaea stagnalis, with integration of different omics levels. On the first generation exposed, no effect on feeding behavior, locomotion or reproduction were highlighted, but metabolism pathways have been shown impacted. A transcriptomic analysis was also conducted to improve our understanding of molecular mechanism involved in diclofenac effect on non-targeted species. On the second generation exposed, we can see an impact of diclofenac on feeding behavior and reproduction

    Long-term exposure to environmental diclofenac concentrations impairs growth and induces molecular changes in Lymnaea stagnalis freshwater snails

    No full text
    International audienceAs pharmaceutical substances are highly used in human and veterinary medicine and subsequently released in the environment, they represent emerging contaminants in the aquatic compartment. Diclofenac (DCF) is one of the most commonly detected pharmaceuticals in water and little research has been focused on its long-term effects on freshwater invertebrates. In this study, we assessed the chronic impacts of DCF on the freshwater gastropod Lymnaea stagnalis using life history, behavioral and molecular approaches. These organisms were exposed from the embryo to the adult stage to three environmentally relevant DCF concentrations (0.1, 2 and 10 ÎŒg/L). The results indicated that DCF impaired shell growth and feeding behavior at the juvenile stage, yet no impacts on hatching, locomotion and response to light stress were noted. The molecular findings (metabolomics and transcriptomic) suggested that DCF may disturb the immune system, energy metabolism, osmoregulation and redox balance. In addition, prostaglandin synthesis could potentially be inhibited by DCF exposure. The molecular findings revealed signs of reproduction impairment but this trend was not confirmed by the physiological tests. Combined omics tools provided complementary information and enabled us to gain further insight into DCF effects in freshwater organisms

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.
    corecore