2,868 research outputs found

    Implementing a State Lottery in Nevada

    Full text link
    The purpose of this study is to assess the feasibility of implementing a state lottery in Nevada and to present the benefits of a state lottery for both the Nevada hospitality industry and the Nevada economy. It will compare and contrast the arguments for and the arguments against a lottery by executing a content analysis of existing research literature as well as other relevant publications. It will also examine the history of lotteries, the states that border Nevada and have lotteries and the legislative history of lottery proposals in Nevada

    System Description: an Interface Between CLAM and HOL

    Get PDF
    . The CLaM proof planner has been interfaced to the HOL interactive theorem prover to provide the power of proof planning to people using HOL for formal verification, etc. The interface sends HOL goals to CLaM for planning and translates plans back into HOL tactics that solve the initial goals. The project homepage can be found at http://www.cl.cam.ac.uk/Research/HVG/Clam.HOL/intro.html. 1 Introduction CLaM [2] is a proof planning system for Oyster, a tactic-based implementation of the constructive type theory of Martin-Lof. CLaM works by using formalized pre- and post-conditions of Oyster tactics as the basis of plan search. These specifications of tactics are called methods. When a plan for a goal is found, the expectation is that the resulting tactic will solve the goal. Experience shows that the search space for plans is often tractable: CLaM has been able to automatically plan many proofs. A particular emphasis of research with CLaM has been the automation of inductive proo..

    A General Framework for Sound and Complete Floyd-Hoare Logics

    Full text link
    This paper presents an abstraction of Hoare logic to traced symmetric monoidal categories, a very general framework for the theory of systems. Our abstraction is based on a traced monoidal functor from an arbitrary traced monoidal category into the category of pre-orders and monotone relations. We give several examples of how our theory generalises usual Hoare logics (partial correctness of while programs, partial correctness of pointer programs), and provide some case studies on how it can be used to develop new Hoare logics (run-time analysis of while programs and stream circuits).Comment: 27 page

    Cascading the use of Web 2.0 technology in secondary schools in the United Kingdom: identifying the barriers beyond pre-service training

    Get PDF
    This paper reports on research that took place at Nottingham Trent University and Sheffield Hallam University, United Kingdom, over two years. The research focuses on the use of Web 2.0 technology, specifically web logs, with pre-service teachers, both during their university programme and the first year of teaching as full-time newly qualified teachers (NQTs). The purpose of this research was to add a developing body of knowledge by identifying whether technology used by pre-service teachers during their training course can be cascaded into their practice once qualified. Key findings identify a number of enablers and barriers to cascading technology in the classroom; these include curriculum time, pupil skills and support. The research concludes that early professional support and development should be on-going and assumptions about new teachers as champions of cascading innovative use of Web 2 technologies into their practice as NQTs may be over optimisti

    Altered leverage around the ankle in people with diabetes: A natural strategy to modify the muscular contribution during walking?

    Get PDF
    Diabetes patients display gait alterations compared to controls including a higher metabolic cost of walking. This study aimed to investigate whether differences in external moment arm (ExtMA) and effective mechanical advantage (EMA) at the ankle in diabetes patients could partly explain the increased cost of walking compared to controls. Thirty one non-diabetic controls (Ctrl); 22 diabetes patients without peripheral neuropathy (DM) and 14 patients with moderate/severe diabetic peripheral neuropathy (DPN) underwent gait analysis using a motion analysis system and force plates. The internal Achilles tendon moment arm length was determined using magnetic resonance imaging during weight-bearing and ExtMA was calculated using gait analysis. A greater value (P<0.01) for the EMA at the ankle was found in the DPN (0.488) and DM (0.46) groups compared to Ctrl (0.448). The increased EMA was mainly caused by a smaller ExtMA in the DPN (9.63cm; P<0.01) and DM (10.31cm) groups compared to Ctrl (10.42cm) These findings indicate that the ankle plantarflexor muscles would need to generate lower forces to overcome the external resistance during walking compared to controls. Our findings do not explain the previously observedhigher metabolic cost of walking in the DM and DPN groups, but uncover a new mechanism through which patients with diabetes and particularly those with DPN reduce the joint moment at the ankle during walking: by applying the ground reaction force more proximally on the foot, or at an angle directed more towards the ankle, thereby increasing the EMA and reducing the ankle joint moment

    Formal Analysis of Linear Control Systems using Theorem Proving

    Full text link
    Control systems are an integral part of almost every engineering and physical system and thus their accurate analysis is of utmost importance. Traditionally, control systems are analyzed using paper-and-pencil proof and computer simulation methods, however, both of these methods cannot provide accurate analysis due to their inherent limitations. Model checking has been widely used to analyze control systems but the continuous nature of their environment and physical components cannot be truly captured by a state-transition system in this technique. To overcome these limitations, we propose to use higher-order-logic theorem proving for analyzing linear control systems based on a formalized theory of the Laplace transform method. For this purpose, we have formalized the foundations of linear control system analysis in higher-order logic so that a linear control system can be readily modeled and analyzed. The paper presents a new formalization of the Laplace transform and the formal verification of its properties that are frequently used in the transfer function based analysis to judge the frequency response, gain margin and phase margin, and stability of a linear control system. We also formalize the active realizations of various controllers, like Proportional-Integral-Derivative (PID), Proportional-Integral (PI), Proportional-Derivative (PD), and various active and passive compensators, like lead, lag and lag-lead. For illustration, we present a formal analysis of an unmanned free-swimming submersible vehicle using the HOL Light theorem prover.Comment: International Conference on Formal Engineering Method

    The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes

    Get PDF
    The headwaters of karst rivers experience considerable hydrological variability, including spates and streambed drying. Extreme summer flooding on the River Lathkill (Derbyshire, UK) provided the opportunity to examine the invertebrate community response to unseasonal spate flows, flow recession and, at temporary sites, streambed drying. Invertebrates were sampled at sites with differing flow permanence regimes during and after the spates. Following streambed drying at temporary sites, dewatered surface sediments were investigated as a refugium for aquatic invertebrates. Experimental rehydration of these dewatered sediments was conducted to promote development of desiccation-tolerant life stages. At perennial sites, spate flows reduced invertebrate abundance and diversity, whilst at temporary sites, flow reactivation facilitated rapid colonisation of the surface channel by a limited number of invertebrate taxa. Following streambed drying, 38 taxa were recorded from the dewatered and rehydrated sediments, with Oligochaeta being the most abundant taxon and Chironomidae (Diptera) the most diverse. Experimental rehydration of dewatered sediments revealed the presence of additional taxa, including Stenophylax sp. (Trichoptera: Limnephilidae) and Nemoura sp. (Plecoptera: Nemouridae). The influence of flow permanence on invertebrate community composition was apparent despite the aseasonal high-magnitude flood events

    End-processing during non-homologous end-joining: a role for exonuclease 1

    Get PDF
    Non-homologous end-joining (NHEJ) is a critical error-prone pathway of double strand break repair. We recently showed that tyrosyl DNA phosphodiesterase 1 (Tdp1) regulates the accuracy of NHEJ repair junction formation in yeast. We assessed the role of other enzymes in the accuracy of junction formation using a plasmid repair assay. We found that exonuclease 1 (Exo1) is important in assuring accurate junction formation during NHEJ. Like tdp1Δ mutants, exo1Δ yeast cells repairing plasmids with 5′-extensions can produce repair junctions with templated insertions. We also found that exo1Δ mutants have a reduced median size of deletions when joining DNA with blunt ends. Surprisingly, exo1Δ pol4Δ mutants repair blunt ends with a very low frequency of deletions. This result suggests that there are multiple pathways that process blunt ends prior to end-joining. We propose that Exo1 acts at a late stage in end-processing during NHEJ. Exo1 can reverse nucleotide additions occurring due to polymerization, and may also be important for processing ends to expose microhomologies needed for NHEJ. We propose that accurate joining is controlled at two steps, a first step that blocks modification of DNA ends, which requires Tdp1, and a second step that occurs after synapsis that requires Exo1
    corecore