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A B S T R A C T

Diabetes patients display gait alterations compared to controls including a higher metabolic cost of walking. This
study aimed to investigate whether differences in external moment arm (ExtMA) and effective mechanical
advantage (EMA) at the ankle in diabetes patients could partly explain the increased cost of walking compared to
controls. Thirty one non-diabetic controls (Ctrl); 22 diabetes patients without peripheral neuropathy (DM) and
14 patients with moderate/severe diabetic peripheral neuropathy (DPN) underwent gait analysis using a motion
analysis system and force plates. The internal Achilles tendon moment arm length was determined using
magnetic resonance imaging during weight-bearing and ExtMA was calculated using gait analysis. A greater
value (P < 0.01) for the EMA at the ankle was found in the DPN (0.488) and DM (0.46) groups compared to Ctrl
(0.448). The increased EMA was mainly caused by a smaller ExtMA in the DPN (9.63 cm; P < 0.01) and DM
(10.31 cm) groups compared to Ctrl (10.42 cm) These findings indicate that the ankle plantarflexor muscles
would need to generate lower forces to overcome the external resistance during walking compared to controls.
Our findings do not explain the previously observedhigher metabolic cost of walking in the DM and DPN groups,
but uncover a new mechanism through which patients with diabetes and particularly those with DPN reduce the
joint moment at the ankle during walking: by applying the ground reaction force more proximally on the foot, or
at an angle directed more towards the ankle, thereby increasing the EMA and reducing the ankle joint moment.

1. Introduction

Diabetes presents a global health challenge with an international
prevalence between 2% and 24% [1,2]. Diabetic peripheral neuropathy
(DPN) is a major complication occurring in 30–50% of all patients,
causing dysfunction of peripheral nerves [3], with implications for not
only sensory but also motor nerves, causing movement dysfunction
[4,5]. People with diabetes walk more slowly, take shorter strides and
generate lower knee and ankle joint moments during walking [6,7]. We
have recently shown a higher metabolic cost of walking (CoW) across a
range of matched walking speeds in patients with diabetes and
particularly in those with DPN compared to controls [12]. This higher
CoW in people with diabetes may underpin their lower physical activity
levels, contributing towards a negative spiral where there is a greater

perception of difficulty for walking, which causes less engagement in
physical activity, leading to poorer metabolic control and worsening of
the diabetic condition. To allow interventions to break this negative
cycle, it is therefore important to understand the factors that contribute
to increasing the CoW in diabetes.

One potential factor contributing to the increased CoW is a lower
effective mechanical advantage (EMA), caused by a greater external
moment arm (ExtMA) of the resultant ground reaction force (GRF)
around the ankle. The EMA around the ankle is given by the ratio of the
internal moment arm of the plantarflexors (IntMA) to the ExtMA, with
lower values reflecting a relatively greater contribution from the
plantarflexor muscles towards the joint moment required to overcome
the external resistance [8,9]. Many diabetes patients have some level of
foot deformity such as high arch, or toe deformities [11], which may
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result in applying force to the ground more distal on the foot, thereby
decreasing the EMA due to the increased ExtMA around the ankle. One
consequence of this leverage alteration is that the plantarflexion
muscles would need to produce more active force to generate the ankle
moment required for propulsion. The EMA around the ankle in diabetes
patients could also be affected by altered use of the lower limb and foot
caused by sensory deficits and plantarflexor muscle weakness. A
relative increase in the contribution from ankle plantarflexor muscles
during walking may contribute to the increased CoW in diabetes
patients.

The aim of this study was to establish whether there are differences
in the ExtMA and EMA at the ankle in patients with diabetes and DPN
compared to controls at a range of matched walking speeds, as a
potential mechanism contributing to the increased CoW recently
observed in diabetes patients [12]. We hypothesized that the ExtMA
will be higher and the EMA will be lower in diabetes patients compared
to controls.

2. Methods

2.1. Participants

After receiving ethical approval for the study from all relevant
bodies, a total of 67 participants were recruited, who gave written
informed consent to participate. Participants were allocated into one of
three groups based upon defined criteria: patients with diabetes and
moderate-severe peripheral neuropathy (n = 14, 12 men, 2 women),
patients with diabetes but no neuropathy (n = 22, 12 men, 10 women)
and healthy controls without diabetes or peripheral neuropathy
(n = 31, 19 men, 12 women). Major exclusion criteria included:
disorders of the vestibular system, musculoskeletal injury, recent
surgery affecting gait, foot or lower limb amputation and open foot
ulcer.

2.2. Clinical assessment of peripheral neuropathy

A clinical evaluation was undertaken to quantify neuropathy in
diabetes patients. Peripheral neuropathy was assessed by using the
modified Neuropathy Disability Score (mNDS) and the vibration
perception threshold (VPT) [13]. A random blood glucose test was
performed in the Ctrl group to confirm the absence of diabetes and the
above neuropathy tests conducted to confirm the absence of neuropathy
in the Ctrl group resulting from any aetiology.

2.3. Gait analysis

Kinematic data were collected at 100 Hz using a full-body modified
Plug-In-Gait marker set [5] with 54 markers and a 10-camera Vicon

motion capture system (Vicon, Oxford, UK) positioned around the 10-m
walkway. Ground reaction forces were measured at 1000 Hz synchro-
nously with motion capturing using three force platforms (Kistler,
Zurich, Switzerland) embedded into the walkway. Where possible
markers were placed directly onto the skin; to minimise movement
artefacts resulting from loose clothing. All participants wore tight-
fitting shorts and t-shirts. Participants were instructed to walk the
length of the walkway at different walking speeds performed in a
specific order (0.6, 0.8, 1.0, 1.2, 1.4 and 1.6 m/s). Walking speed was
controlled by measuring the velocity of a marker attached to the sacrum
after each trial from the motion analysis data and providing immediate
verbal feedback for participants as to whether they needed to walk
more quickly or slower on the next trial to achieve the required speed.
Although this approach involved a systematic, rather than randomised
order of walking speeds, it was deemed the most optimal approach to
achieve the required speeds while retaining a natural gait, compared to
alternatives such as a metronome that restricts cadence. Furthermore,
given that walking is not an unusual or unaccustomed task, there is
little reason to expect any learning or order effects. Walking trials were
repeated to obtain three ‘clean’ foot contacts with the force platforms
per limb, per speed condition. All participants wore the same standar-
dised shoes (MedSurg, Darco, Raisting, Germany).

2.4. MRI scanning and analysis

Magnetic resonance imaging (MRI) was used to quantify the IntMA
length as the Achilles tendon moment arm length at the ankle, as
previously described [14]. IntMA was defined as the perpendicular
distance from the centre of rotation on the talus to the Achilles tendon
line of action (Fig. 1a) [15,16]. The IntMA lengths were determined
with participants standing upright (i.e., full weight-bearing) in a 0.25T
MRI scanner (E-Scan, Esaote Biomedica, Genoa, Italy). Weight-bearing
scans were acquired across the predominant range of ankle joint angles
(10 deg dorsiflexion, neutral position, 10 deg plantarflexion) experi-
enced during walking, to relate these measurements as closely as
possible to the conditions of walking. The ankle joint instant centre
of rotation was located following the graphical approach described by
Reuleaux [17] for ankle angle rotations from −10 to 10 deg. Instant
centre of rotation was determined by measuring the rotation of the
talus, which was considered to represent the whole rotating foot,
relative to the tibia. IntMA was measured on the neutral ankle scan.
All images were analysed using a custom-script written in MATLAB
software.

2.5. Measurement of the ExtMA at the ankle during walking and foot length

Foot length was measured in the standing position as the distance
between the end of the big toe and the heel. ExtMA length around the

Fig. 1. Definition of internal and external moment arms and illustration of key concepts. A. An example sagittal plane MRI scan of the lower limb showing the measurement of the internal
moment arm length (indicated by the white arrow). B. Diagram showing the external moment arm length (Ext MA; black dashed line) as the perpendicular distance between the resultant
GRF vector and the joint centre of rotation (●); the internal Achilles tendon moment arm (Int MA; red dashed line) as the perpendicular distance between the tendon’s action line and the
ankle joint centre (●). The EMA is calculated as: IntMA/ExtMA. C. Illustrative example of how the GRF can be applied on the foot in two different ways causing a reduction in the ExtMA
(dashed lines), thereby increasing the EMA and reducing the ankle joint moment and the muscular force contribution from the plantarflexors: i) with the point of application closer to the
ankle joint centre (GRF 2 compared to GFR 1) and/or ii) by an altered angle of application (GRF 3 compared to GRF 1).
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ankle during walking was defined as the perpendicular distance
between the resultant GRF vector in the sagittal plane and the ankle
joint centre of rotation. The ankle joint centre of rotation was defined
from markers positioned on the lateral and medial malleoli. ExtMA
length was quantified throughout the stance phase on every motion
analysis frame from integration of the kinematic data with the GRF
data.

2.6. Calculation of the EMA

EMA around the ankle joint (Fig. 1b) was calculated as:

EMA IntMA
ExtMA

=

2.7. Gait biomechanical analysis

Gait variables were calculated using Visual 3D software (C-motion
Inc., MD, USA): ExtMA, joint moments, GRFs and ankle, knee and hip
joint angles. Joint moments and GRFs were normalised to body mass.
Data for the ExtMA, joint moments and GRFs were collected during the
stance phase, while ankle, knee and hip joint ranges of motion (RoM)
were analysed throughout the gait cycle. Means across both legs and
three trials were used for all variables presented.

2.8. Statistics

A one-way analysis of variance (ANOVA) was performed for all
variables to assess between group differences. If the ANOVA was
significant, a Fisher’s least significant difference (LSD) post-hoc test
was used to test for differences between the diabetes groups (DM and
DPN) and the control group. An analysis of covariance (ANCOVA) was
performed for the external moment arm at peak ankle joint moment
using foot length as the covariate. All values presented are means and
standard deviation. Significance was set at p < 0.05.

3. Results

3.1. Participant characteristics

Significant differences existed between the groups in age, body mass
and BMI (P < 0.01), with the DPN group being older and heavier with
a greater BMI compared to controls (DPN: age 66 ± 14 yr, body mass
91.5 ± 18 kg, BMI 31 ± 4 kg/m2; DM: age 51 ± 9 yr, body mass
80.5 ± 12 kg, BMI 28 ± 4 kg/m2; Ctrl: age 56 ± 10 yr, body mass
76 ± 10 kg, BMI 26 ± 3 kg/m2).

3.2. Diabetic peripheral neuropathy

As expected, patients with DPN displayed significantly higher mNDS
and VPT than the Ctrl and the DM groups (DPN: mNDS 7 ± 2 Score/
10, VPT 27.4 ± 9.1 V; DM: mNDS 2 ± 1 Score/10, VPT 8.2 ± 3.4 V;
Ctrl: mNDS 1 ± 1 Score/10, VPT 6.1 ± 3.4 V). There were no
differences (P > 0.05) in the mNDS or VPT between the Ctrl and the
DM groups, underlining that this diabetes group had no neuropathy.

3.3. Temporal–spatial gait parameters

The DPN group displayed significantly longer single limb stance
times and shorter step lengths in all given speeds compared to Ctrl
group (Table 1).

3.4. ExtMA length at peak ankle joint moment during walking & gait
parameters

ExtMA length at peak ankle joint moment was significantly smaller Ta
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(P < 0.01) in the DPN group compared to the Ctrl group at walking
speeds of 0.6; 1.0 and 1.4 m/s and for the mean across all speeds
(Table 1). Significant differences (P < 0.01) were also observed in
ExtMA length between the DM and Ctrl groups at a walking speed of
1.4 m/s. Foot length was not significantly different between the three
groups (DPN: 25.81 ± 2.4 cm; DM: 24.77 ± 2.1 cm; Ctrl:
25.43 ± 1.7 cm).

3.5. IntMA and EMA during walking

There were no differences (P > 0.05) in the IntMA length in the
DPN and the DM groups compared to the Ctrl group (DPN:
4.98 ± 0.21 cm; DM: 4.73 ± 0.30 cm; Ctrl: 4.72 ± 0.27 cm). EMA
at the ankle was significantly (P < 0.01) higher in the DPN group
compared to the Ctrl group at walking speeds of 0.6; 1.0; 1.2; 1.4,
1.6 m/s and for the mean across all walking speeds (Table 1). EMA was
also significantly (P < 0.01) higher in the DM group compared to the
Ctrl group at walking speeds of 0.6; 0.8, 1.4 m/s and for the mean
across all walking speeds.

3.6. Ground reaction forces during walking

Ground reaction forces were significantly higher (P < 0.01) in the
DPN group compared to the Ctrl at walking speeds of 0.6; 0.8; 1.0; 1.4
and 1.6 m/s and for the mean across all walking speeds (Table 1).
Significantly higher (P < 0.01) GRF values were also found in the DM
group compared to the Ctrl group at the walking speed of 1.6 m/s and
for the mean across all speeds.

3.7. Peak ankle joint moments & lower limb kinematics during walking

Peak ankle plantarflexion joint moments were significantly lower
(P < 0.01) in the DPN compared to the Ctrl group for all walking
speeds including the mean across all speeds (Table 1), with the
exception of values at 1.2 m/s. Peak ankle plantarflexion joint moments
were also significantly lower (P < 0.01) in the DM compared to the
Ctrl group at walking speeds of 1.2, 1.4 and 1.6 m/s and for the mean
across all speeds.

A significantly (P < 0.01) smaller ankle, knee and hip joint RoM
was observed in the DPN group compared to the Ctrl group across all
walking speeds (Table 2). Joint RoM was also significantly (P < 0.01)
reduced in the DM group compared to the Ctrl group at the ankle (1.0
and 1.2 m/s), knee (0.8; 1.0; 1.2 m/s and for the mean values) and hip
(all speeds except 0.6 m/s). Between group differences (range of
motion) for the DPN and Ctrl groups were in the range 11–15% for
the ankle, 4–6% for the knee and 9–11% for the hip across the range of
speeds examined. Smaller percentage differences were found when the
Ctrl group was compared to the DM group across the range of speeds
(1–5% for the ankle, 1–3% for the knee and 4–8% for hip).

4. Discussion

We have recently shown that patients with diabetes, and especially
those with DPN, have a higher CoW compared to controls [12]. In the
present study we investigated whether differences between diabetes

Table 2
Ankle, knee and hip joint ranges of motion (RoM) over the gait cycle at different matched speeds.

RoM Ankle (deg) RoM Knee (deg) RoM Hip (deg)

Speed (m/s) Ctrl DM DPN Ctrl DM DPN Ctrl DM DPN

0.6 23.1 (8.1) 22.7 (7.8) 20.8 (9.5)** 64.5 (24.4) 62.6 (23.7) 61.2 (27.4)** 44.9 (16.5) 42.4 (12.7) 40.8 (15.8)**
0.8 23.7 (7.4) 23.5 (8.5) 21.1 (7.8)** 66.6 (27.6) 64.8 (28.3)** 62.7 (29.1)** 46.6 (17.9) 43.1 (15.8)** 42.9 (16.0)**
1.0 25.6 (9.0) 24.4 (8.3)* 22.5 (9.4)** 67.7 (25.1) 66.1 (21.2)** 64.9 (24.0)** 46.8 (14.8) 44.8 (16.6)** 42.1 (19.3)**
1.2 26.4 (7.5) 25.2 (8.7)* 23.7 (8.4)** 69.4 (22.9) 67.7 (26.6)** 66.5 (27.3)** 47.9 (16.7) 44.5 (15.7)** 43.2 (18.7)**
1.4 26.8 (10.3) 26.0 (9.1) 23.4 (9.2)** 69.8 (27.8) 69.3 (25.8) 67.3 (30.4)** 49.8 (13.7) 47.3 (14.2)** 45.7 (15.3)**
1.6 27.3 (9.9) 26.9 (8.6) 24.3 (9.0)** 71.0 (28.4) 70.3 (31.2) 68.4 (30.7)** 50.7 (19.4) 48.4 (18.9)** 46.5 (21.4)**
Mean 25.4 (8.7) 24.7 (8.5) 22.4 (8.8)** 68.2 (26.0) 66.8 (26.1)** 65.2 (28.1)** 47.8 (16.5) 45.1 (16.7)** 43.5 (17.8**)

Healthy controls (Ctrl, n = 31), diabetic patients with no neuropathy (DM, n = 22) and diabetic patients with moderate/severe neuropathy (DPN, n = 14). Significant differences from
the Ctrl group are denoted by *(P < 0.05) or **(P < 0.01). Values are means (standard deviations). RoM – range of motion.

Fig. 2. Ankle plantarflexion (PF) joint moment, External moment arm (ExtMA) and the
vertical ground reaction forces (GRF) during the stance phase of walking at 1.4 m/s for
healthy controls (Ctrl), diabetic patients with no neuropathy (DM), and diabetic patients
with moderate/severe neuropathy (DPN). Values are means. Line graphs: Ctrl – solid line
(n = 31), DM – dotted line (n = 22), DPN – dashed line (n = 14).
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patients and healthy controls in the ExtMA and EMA around the ankle
joint could be a potential mechanism contributing to the higher
metabolic cost of walking. In contrast with our hypothesis, we
established that patients with diabetes, and especially those with DPN
have a smaller ExtMA and a higher EMA around the ankle joint
compared to controls (Fig. 2; Table 1).

The smaller ExtMA at the ankle in patients with diabetes and
particularly those with DPN was evident across all walking speeds
(Table 1) and means that either the resultant GRF was applied closer to
the ankle joint centre, or the angle of application was more towards the
ankle, thereby reducing the ankle joint moment (Fig. 1c). This is
consistent with the finding of reduced ankle plantarflexor joint moment
in patients with DPN compared to controls across all matched walking
speeds (Table 1).

It has previously been shown that diabetes patients reduce joint
moments by taking shorter strides with less flexed joints [10,18]. Our
findings reveal a new mechanism through which people with diabetes
and particularly those with DPN reduce the joint moment at the ankle
during walking. No differences in foot length existed to explain the
smaller ExtMA found in patients with DPN and further, this parameter
(foot length) was also entered as a covariate in the statistical analysis of
variance. Our finding of a smaller ExtMA and greater EMA around the
ankle does not appear to explain an increased CoW, as the plantarflexor
muscles would need to produce not higher, but smaller contractile
forces to rotate the foot and propel the body forward (Fig. 3). However,
the consequent reduction in the force applied to the Achilles tendon
would result in smaller ROM, reduced tendon elongation and therefore
a reduced amount of elastic strain energy stored, which could impact
upon the CoW, but this requires further investigation.

The joint kinematics from the present study provides insight as to
how patients with DPN might have been able to execute this natural
strategy of reducing the ExtMA around the ankle and thereby minimis-
ing the ankle joint moment. The ankle joint RoM over the gait cycle was
reduced in patients with DPN compared to controls as a result of a
reduced peak dorsiflexion angle. This reduced dorsiflexion suggests that
patients with DPN were not able to allow the tibia to rotate over the
foot to the same extent as controls during the mid-stance phase, further
evidenced by the reduced knee flexion (Table 2), thereby applying force
to the ground more proximally on the foot and reducing the ExtMA
around the ankle as a result. We should also consider that walking with
this restricted joint range of motion may not be a natural strategy of
choice, but rather a walking strategy of necessity due to specific
limitations, which in turn may bring about the alterations in the ExtMA
discussed.

Whilst the total hip joint RoM during walking was reduced in
diabetes patients and especially those with DPN compared to controls
(Table 2), patients with diabetes and to the greatest extent those with
DPN flexed the hip more than controls. This kinematic strategy fits very
well with the ‘hip strategy’ previously reported in other studies [10,19],
whereby diabetes patients ‘drag’ the leg forwards into the swing phase
from the hip, rather than ‘propelling’ the leg off from the ground using
the ankle plantarflexors. Whilst greater knee and hip RoM occurs with
increasing walking speeds in all groups, a consistently smaller RoM at
the knee and hip in the DPN group (Table 2) underlies the shorter step
length reported in the present study and is comparable with a number
of previous studies conducted in diabetes patients [11,19,20,10,12].

Whilst previous studies have consistently reported lower ankle joint
moments in diabetes patients during walking, this has typically been at
the self-selected speed, which is consistently lower in diabetes patients
as they seek to minimise the demands of the task. Here we show that
when walking speed is matched, joint moments are consistently lower
in the DM and particularly in the DPN group compared to controls
(Table 1). The reduction in the ExtMA and increase in the EMA at the
ankle in the diabetes groups is relatively independent of walking speed,
whereas ankle joint moments and the vertical GRF increase with
increasing walking speed (Table 1). It is also noteworthy that although

Fig. 3. Effective mechanical advantage (EMA) values across the second part of the stance.
The second part of the stance phases is shown here to eliminate artefacts present in the
early part and also because the latter part is considered the most relevant because the
peak ankle joint moment is produced during this period. Line graphs: Ctrl – solid line, DM
– dotted line, DPN – dashed line. Values are means.
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the peak ankle joint moments were significantly lower in the diabetes
groups compared to controls, the vertical GRF was significantly higher
especially in the DPN group (Table 1). This higher GRF seems to
underline the importance of the strategy in diabetes patients for
reducing the ExtMA around the ankle to lower the joint moment
substantially below that of controls. What remains unclear is whether
this represents a natural strategy to lower the demands, or whether they
have no other possibility to walk differently because of musculoskeletal
limitations.

In terms of study limitations, the mean body mass was significantly
different between groups (being higher in the DPN group), however,
this should not affect the ankle ExtMA, EMA, or the joint moments since
these were normalised for body mass. Furthermore, the higher body
mass of patients with DPN is a well-known characteristic of this clinical
population described by previous studies [21,22]. Although only a
mean of 10 years difference, patients in the DPN group were signifi-
cantly older than controls (66–56 years, respectively), which might be a
confounding factor for some of the variables examined, but unlikely to
affect the main variables of interest: the ankle ExtMA and EMA. Whilst
a number of diabetes patients will have had foot deformity to varying
degrees, we did not objectively assess this, which should be acknowl-
edged as a limitation. However, within our hypothesis we did not
anticipate discriminating between foot deformities, but rather testing
the concept that any diabetic foot deformity would serve to shift the
centre of pressure under the foot. This aspect could be more thoroughly
investigated by future work using pedobarography.
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