32 research outputs found

    Increased ROS Production: A Component of the Longevity Equation in the Male Mygalomorph, Brachypelma albopilosa

    Get PDF
    The diversity of longevities encountered in wildlife is one of the most intriguing problems in biology. Evolutionary biologists have proposed different theories to explain how longevity variability may be driven by bad genes expression in late life or by gene pleiotropic effects. This reflexion has stimulated, in the last ten years, an active research on the proximal mechanisms that can shape lifespan. Reactive oxygen species (ROS), i.e., the by-products of oxidative metabolism, have emerged as the main proximate cause of ageing. Because ROS are mainly produced by the mitochondria, their production is linked to metabolic rate, and this may explain the differences in longevity between large and small species. However, their implication in the sex difference in longevity within a species has never been tested, despite the fact that these differences are widespread in the animal kingdom.Mitochondrial superoxide production of hemolymph immune cells and antioxidant and oxidative damages plasma levels were measured in adult male and female B. albopilosa at different ages. We found that female spiders are producing less mitochondrial superoxide, are better protected against oxidative attack and are then suffering less oxidative damages than males at adulthood.In tarantulas, once reaching sexual maturity, males have a life expectancy reduced to 1 to 2 years, while females can still live for 20 years, in spite of the fact that females continue to grow and moult. This study evidences an increased exposure of males to oxidative stress due to an increase in mitochondrial superoxide production and a decrease in hemolymph antioxidant defences. Such a phenomenon is likely to be part of the explanation for the sharp reduction of longevity accompanying male tarantula maturity. This opens several fundamental research roads in the future to better understand how reproduction and longevity are linked in an original ageing model

    The level of H2 O2 -type oxidative stress regulates virulence of Theileria-transformed leukocytes

    Get PDF
    International audienceTheileria annulata infects predominantly macro-phages, and to a lesser extent B cells, and causes a widespread disease of cattle called tropical theileriosis. Disease-causing infected macro-phages are aggressively invasive, but this viru-lence trait can be attenuated by long-term culture. Attenuated macrophages are used as live vaccines against tropical theileriosis and via their charac-terization one gains insights into what host cell trait is altered concomitant with loss of virulence. We established that sporozoite infection of mono-cytes rapidly induces hif1-α transcription and that constitutive induction of HIF-1α in transformed leukocytes is parasite-dependent. In both infected macrophages and B cells induction of HIF-1α acti-vates transcription of its target genes that drive host cells to perform Warburg-like glycolysis. We propose that Theileria-infected leukocytes main-tain a HIF-1α-driven transcriptional programme typical of Warburg glycolysis in order to reduce as much as possible host cell H 2O2 type oxidative stress. However, in attenuated macrophages H2O2 production increases and HIF-1α levels conse-quently remained high, even though adhesion and aggressive invasiveness diminished. This indicates that Theileria infection generates a host leukocytes hypoxic response that if not properly controlled leads to loss of virulence

    Sirt1 Regulates Insulin Secretion by Repressing UCP2 in Pancreatic β Cells

    Get PDF
    Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic β cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In β cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in β cells to affect insulin secretion

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Inhibition of Succinate Dehydrogenase by Pesticides (SDHIs) and Energy Metabolism

    No full text
    Succinate dehydrogenase (SDH) is one of the enzymes of the tricarboxylic acid cycle (Krebs cycle) and complex II of the mitochondrial respiratory chain. A class of fungicides (SDHIs) targets the complex II reaction in the SDH. A large number of those in use have been shown to inhibit SDH in other phyla, including humans. This raises questions about possible effects on human health and non-target organisms in the environment. The present document will address metabolic consequences in mammals; it is neither a review on SDH nor is it about the toxicology of SDHIs. Most clinically relevant observations are linked to a severe decrease in SDH activity. Here we shall examine the mechanisms for compensating a loss of SDH activity and their possible weaknesses or adverse consequences. It can be expected that a mild inhibition of SDH will be compensated by the kinetic properties of this enzyme, but this implies a proportionate increase in succinate concentration. This would be relevant for succinate signaling and epigenetics (not reviewed here). With regard to metabolism, exposure of the liver to SDHIs would increase the risk for non-alcoholic fatty liver disease (NAFLD). Higher levels of inhibition may be compensated by modification of metabolic fluxes with net production of succinate. SDHIs are much more soluble in lipids than in water; consequently, a different diet composition between laboratory animals and humans is expected to influence their absorption

    Inhibition of Succinate Dehydrogenase by Pesticides (SDHIs) and Energy Metabolism

    No full text
    Succinate dehydrogenase (SDH) is one of the enzymes of the tricarboxylic acid cycle (Krebs cycle) and complex II of the mitochondrial respiratory chain. A class of fungicides (SDHIs) targets the complex II reaction in the SDH. A large number of those in use have been shown to inhibit SDH in other phyla, including humans. This raises questions about possible effects on human health and non-target organisms in the environment. The present document will address metabolic consequences in mammals; it is neither a review on SDH nor is it about the toxicology of SDHIs. Most clinically relevant observations are linked to a severe decrease in SDH activity. Here we shall examine the mechanisms for compensating a loss of SDH activity and their possible weaknesses or adverse consequences. It can be expected that a mild inhibition of SDH will be compensated by the kinetic properties of this enzyme, but this implies a proportionate increase in succinate concentration. This would be relevant for succinate signaling and epigenetics (not reviewed here). With regard to metabolism, exposure of the liver to SDHIs would increase the risk for non-alcoholic fatty liver disease (NAFLD). Higher levels of inhibition may be compensated by modification of metabolic fluxes with net production of succinate. SDHIs are much more soluble in lipids than in water; consequently, a different diet composition between laboratory animals and humans is expected to influence their absorption
    corecore