68 research outputs found

    Acute mesenteric ischaemia in refractory shock on veno-arterial extracorporeal membrane oxygenation

    Get PDF
    Background: Acute mesenteric ischaemia is a severe complication in critically ill patients, but has never been evaluated in patients on veno-arterial extracorporeal membrane oxygenation (V-A ECMO). This study was designed to determine the prevalence of mesenteric ischaemia in patients supported by V-A ECMO and to evaluate its risk factors, as well as to appreciate therapeutic modalities and outcome. Methods: In a retrospective single centre study (January 2013 to January 2017), all consecutive adult patients who underwent V-A ECMO were included, with exclusion of those dying in the first 24 hours. Diagnosis of mesenteric ischaemia was performed using digestive endoscopy, computed tomography scan or first-line laparotomy. Results: One hundred and fifty V-A ECMOs were implanted (65 for post-cardiotomy shock, 85 for acute cardiogenic shock, including 39 patients after refractory cardiac arrest). Overall, median age was 58 (48-69) years and mortality 56%. Acute mesenteric ischaemia was suspected in 38 patients, with a delay of four (2-7) days after ECMO implantation, and confirmed in 14 patients, that is, a prevalence of 9%. Exploratory laparotomy was performed in six out of 14 patients, the others being too unstable to undergo surgery. All patients with mesenteric ischaemia died. Independent risk factors for developing mesenteric ischaemia were renal replacement therapy (odds ratio (OR) 4.5, 95% confidence interval (CI) 1.3-15.7, p=0.02) and onset of a second shock within the first five days (OR 7.8, 95% CI 1.5-41.3, p=0.02). Conversely, early initiation of enteral nutrition was negatively associated with mesenteric ischaemia (OR 0.15, 95% CI 0.03-0.69, p=0.02). Conclusions: Acute mesenteric ischaemia is a relatively frequent but dramatic complication among patients on V-A ECMO

    Oral Condition and Incident Coronary Heart Disease: A Clustering Analysis

    Get PDF
    Poor oral health has been linked to coronary heart disease (CHD). Clustering clinical oral conditions routinely recorded in adults may identify their CHD risk profile. Participants from the Paris Prospective Study 3 received, between 2008 and 2012, a baseline routine full-mouth clinical examination and an extensive physical examination and were thereafter followed up every 2 y until September 2020. Three axes defined oral health conditions: 1) healthy, missing, filled, and decayed teeth; 2) masticatory capacity denoted by functional masticatory units; and 3) gingival inflammation and dental plaque. Hierarchical cluster analysis was performed with multivariate Cox proportional hazards regression models and adjusted for age, sex, smoking, body mass index, education, deprivation (EPICES score; Evaluation of Deprivation and Inequalities in Health Examination Centres), hypertension, type 2 diabetes, LDL and HDL serum cholesterol (low- and high-density lipoprotein), triglycerides, lipid-lowering medications, NT-proBNP and IL-6 serum level. A sample of 5,294 participants (age, 50 to 75 y; 37.10% women) were included in the study. Cluster analysis identified 3,688 (69.66%) participants with optimal oral health and preserved masticatory capacity (cluster 1), 1,356 (25.61%) with moderate oral health and moderately impaired masticatory capacity (cluster 2), and 250 (4.72%) with poor oral health and severely impaired masticatory capacity (cluster 3). After a median follow-up of 8.32 y (interquartile range, 8.00 to 10.05), 128 nonfatal incident CHD events occurred. As compared with cluster 1, the risk of CHD progressively increased from cluster 2 (hazard ratio, 1.45; 95% CI, 0.98 to 2.15) to cluster 3 (hazard ratio, 2.47; 95% CI, 1.34 to 4.57; P < 0.05 for trend). To conclude, middle-aged individuals with poor oral health and severely impaired masticatory capacity have more than twice the risk of incident CHD than those with optimal oral health and preserved masticatory capacity (ClinicalTrials.gov NCT00741728)

    Prediction of nitrogen excretion from data on dairy cows fed a wide range of diets compiled in an intercontinental database: A meta-analysis

    Get PDF
    Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total 2manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Breakthrough in cardiac arrest: reports from the 4th Paris International Conference

    Get PDF

    Quantifying the yield stress of bentonite muds mixed with other clays during drilling operations

    No full text
    International audienceIn civil engineering, bentonite-water mixtures, commonly referred to as drilling muds, are intensively used in order to lubricate tools, consolidate walls, and help extracting cuttings during drilling operations. The efficiency of drilling muds in each of these tasks lies in their rheological properties depending mainly on the amount of clay materials. During the field works, drilling muds are mixed with the excavated soil materials (e.g., sand, clay, organic matter) that may change drastically the rheological properties of mixtures. With the aim of understanding better the rheology of field drilling muds mixed with other clays, rheological measurements on monoand binary-clay suspensions were performed using a rotational rheometer equipped with coaxial cylinders, for which the type of clay materials (i.e., bentonite, kaolin and illite), the total clay volume fraction φt\varphi_t and the bentonite to clay volume ratio RbR_b were varied. The contribution of this work is twofold: (i) to highlight the major role of φt\varphi_t and RbR_b independently on the rheology of binary-clay suspensions and (ii) to provide phenomenological models to quantify the dependency of the yield stress on both φt\varphi_t and RbR_b that would be particularly useful for industrial applications
    corecore