91 research outputs found

    Précipitations méditerranéennes intenses -caractérisation microphysique et dynamique dans l'atmosphère et impacts au sol

    Get PDF
    Cette étude propose une unification des formulations mono- et multi-moments de la distribution granulométrique des pluies (DSD pour drop size distribution ) proposées dans la littérature dans le cadre des techniques de mise à l échelle (scaling). On considère dans un premier temps que la DSD normalisée par la concentration en gouttes (Nt, moment d'ordre 0 de la DSD) peut s écrire comme une fonction de densité de probabilité (ddp) du diamètre normalisé par un diamètre caractéristique (Dc). Cette ddp, notée g(x) avec x=D/Dc, aussi appelé distribution générale, semble être bien représentée par une loi gamma à deux paramètres. Le choix d un diamètre caractéristique particulier, le rapport des moments d ordre 4 et 3, conduit à une relation d auto-consistance entre les paramètres de la fonction g(x). Deux méthodes différentes, fondées sur 3 moments particuliers de la DSD (M0, M3 et M4) ou bien sur des moments multiples (de M0 à M6) sont proposées pour l estimation des paramètres et ensuite évaluées sur 3 ans d observations de DSD recueillies à Alès dans le cadre de l'Observatoire Hydrométéorologique Méditerranéen Cévennes-Vivarais (OHMCV). Les résultats révèlent que: 1) les deux méthodes d estimation des paramètres ont des performances équivalentes; 2) malgré la normalisation, une grande variabilité de la DSD est toujours observée dans le jeu de données mis à l échelle. Ce dernier point semble résulter de la diversité des processus micro-physiques qui conditionnent la forme de la DSD.Cette formulation est ensuite adaptée pour une mise à l échelle avec un ou deux moments de la DSD en introduisant des modèles en loi puissance entre des moments dits de référence (par exemple l intensité de la pluie R et / ou le facteur de réflectivité radar Z) et les moments expliqués (concentration en gouttes Nt, diamètre caractéristique Dc). De manière analogue à la première partie du travail, deux méthodes sont proposées pour estimer des paramètres climatologiques des DSD mises à l échelle par un ou deux DSD moment(s). Les résultats montrent que: 1) la méthode d'estimation a un impact significatif pour la formulation de mise à l'échelle par un seul moment; 2) le choix du moment de référence dépend des objectifs d étude: par exemple, le modèle mis à l'échelle par des moments d'ordre élevé produit une bonne performance pour les grosses gouttes mais pas pour les petites; 3) l utilisation de deux moments au lieu d un seul améliore significativement la performance du modèle pour représenter les DSD.Notre modèle est ensuite appliqué pour analyser la variabilité inter- événementielle selon trois paramètres (Nt, Dc et , ce dernier paramètre décrivant la forme de la fonction gamma). Différentes séquences de pluie ont été identifiées de façon subjective pour l événement pluvieux intense des 21-22 octobre 2008 par des changements brusques des moments et/ou paramètres dans les séries temporelles correspondantes. Ces phases de pluie sont liées à des processus météorologiques différents. Une relation préliminaire est établie entre les observations radar et la variation des paramètres des DSD au sol telle que mesurée par le disdromètre. Les formulations de mise à l échelle sont également appliquées pour des estimations des densités de flux d énergie cinétique des précipitations à partir de l'intensité de la pluie et / ou de la réflectivité radar. Les résultats confirment que l utilisation de deux moments (R et Z) améliore significativement les performances de ces modèles, malgré les caractéristiques d'échantillonnage très différentes des radars et des pluviomètres. Cette application ouvre des perspectives intéressantes pour la spatialisation de l énergie cinétique des pluies dans le cadre des études sur le pouvoir érosif des pluies.This study offers a unified formulation for the single- and multi-moment raindrop size distributions (DSD), which were proposed in the framework of scaling analysis in the literature. The key point is to consider the DSD scaled by drop concentration (Nt, 0th order DSD moment), as a probability density function (pdf) of raindrop diameter scaled by characteristic diameter (D/Dc). The Dc is defined as the ratio of the 4th to the 3rd DSD moment. A two-parameter gamma pdf model, with a self-consistency relationship, is found to be suitable for representing the scaling DSD formulation. For the purpose of parameter estimation, two different methods, based on three DSD moments (0th, 3rd and 4th moments) and multiple DSD moments (from 0th to 6th moments), are proposed and then evaluated through the 3-year DSD observations, collected at Alés within the activities of the Cévennes-Vivarais Mediterranean Hydrometeorological Observatory (CVMHO). The results reveal that: 1) the scaled DSD model parameterized by three moments (0th, 3rd and 4th moments) possesses a similar performance compared to that constructed by multiple DSD moments; 2) regardless the application of scaled technique, large variation is still exhibited in this climatological DSD scaled dataset. The scaled DSD formulation is, in a second step, adapted to the one- and two-moment scaling DSD formulations by introducing single and dual power-law models between the reference moments (e.g. rain rate R and/or radar reflectivity factor Z) and the explained moments (total concentration Nt, characteristic diameter Dc). Compared with previous DSD formulations presented in the literature, the presented approach explicitly accounts for the prefactors of the power-law models to produce a uniform and dimensionless scaled distribution, whatever the reference moment(s) considered. In the same manner, two methods based on 1) single or dual power-law models and 2) multiple DSD moments (from 0th to 6th moments), are proposed to estimate the climatological parameters in the one- and two-moment scaling DSD formulations. The results show that: 1) the estimation method has a significant impact on the climatological DSD formulation scaled by one moment; 2) the choice of the reference moment to scale DSD depends on the objectives of the research: e.g. the DSD model scaled by high order moment produces a good performance for large drops at the cost of a poor performance for the small ones; 3) using two scaling moments improves significantly the model performance to represent the natural DSD, compared to the one-moment DSD formulation. In terms of applications of scaling DSD model, the analysis of the inter-event variability is performed on the basis of the scaling formulation containing three parameters (Nt, Dc and describing the shape of the gamma function). Different rain phases can be identified by the sudden shifts of moments and parameters in DSD time series. It is found that these rain phases are well linked to different weather processes. And a preliminary relationship is established between the radar observations and DSD parameters. The climatological scaling DSD formulations are also used for the DSD reconstitutions and for rainfall kinetic energy flux density estimations by rain intensity and/or radar reflectivity factor. The results confirm that the application of two scaling moments (R and Z) improves significantly the performance of these models, regardless the different sampling characteristics between radar and raingauge.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Radar rainfall estimation for the post-event analysis of a Slovenian flash-flood case: application of the Mountain Reference Technique at C-band frequency

    No full text
    International audienceThis article is dedicated to radar rainfall estimation for the post-event analysis of a Slovenian flash flood that occurred on 18 September 2007. The utility of the Mountain Reference Technique is demonstrated to quantify rain attenuation effects that affect C-band radar measurements in heavy rain. Maximum path-integrated attenuation between 15 and 20 dB were measured thanks to mountain returns for path-averaged rain rates between 10 and 15 mm h−1 over a 120-km path. The proposed technique allowed estimation of an effective radar calibration correction factor, assuming the reflectivity-attenuation relationship to be known. Screening effects were quantified using a geometrical calculation based on a digitized terrain model of the region. The vertical structure of the reflectivity was modelled with a normalized apparent vertical profile of reflectivity. Implementation of the radar data processing indicated that: (1) attenuation correction using the Hitschfeld Bordan algorithm allowed obtaining satisfactory radar rain estimates (Nash criterion of 0.8 at the event time scale); (2) due to the attenuation equation instability, it is however compulsory to limit the maximum path-integrated attenuation to be corrected to about 10 dB; (3) the results also proved to be sensitive on the parameterization of reflectivity-attenuation-rainrate relationships. The convective nature of the precipitation explains the rather good performance obtained. For more contrasted rainy systems with convective and stratiform regions, the combination of the vertical (VPR) and radial (attenuation, screening) sources of heterogeneity yields a still very challenging problem for radar quantitative precipitation estimation at C-band

    USING MSG THERMAL INFRARED SURFACE TEMPERATURE TO IMPROVE SVAT MODEL SIMULATIONS

    Get PDF
    ABSTRACT Interesting perspectives concerning the calibration of Soil Vegetation Atmosphere Transfer (SVAT) models are offered thanks to the higher acquisition frequency of the thermal infrared (TIR) brightness temperature provided by MSG. SVAT models are useful for the monitoring of root zone soil moisture, sensible and latent surface fluxes. They may be helpful for meso-scale meteorological models initialisation, or for hydrological and agricultural applications. It was recently proven that SVAT models could be correctly calibrated thanks to thermal infrared data. However, this was only shown at the local field scale on homogeneous covers with ground-based data. The purpose of this presentation is to present the potentialities of TIR brightness temperatures acquired by MSG in order to calibrate SVAT model over patchy regions. The feasibility studies are performed with simulated data to test calibration and desegregation methodologies

    Social and Hydrological Responses to Extreme Precipitations: An Interdisciplinary Strategy for Postflood Investigation

    Get PDF
    International audienceThis paper describes and illustrates a methodology to conduct postflood investigations based on interdisciplinary collaboration between social and physical scientists. The method, designed to explore the link between crisis behavioral response and hydrometeorological dynamics, aims at understanding the spatial and temporal capacities and constraints on human behaviors in fast-evolving hydrometeorological conditions. It builds on methods coming from both geosciences and transportations studies to complement existing post-flood field investigation methodology used by hydrometeorologists. The authors propose an interview framework, structured around a chronological guideline to allow people who experienced the flood firsthand to tell the stories of the circumstances in which their activities were affected during the flash flood. This paper applies the data collection method to the case of the 15 June 2010 flash flood event that killed 26 people in the Draguignan area (Var, France). As a first step, based on the collected narratives, an abductive approach allowed the identification of the possible factors influencing individual responses to flash floods. As a second step, behavioral responses were classified into categories of activities based on the respondents' narratives. Then, aspatial and temporal analysis of the sequences made of the categories of action to contextualize the set of coping responses with respect to local hydrometeorological conditions is proposed. During this event, the respondents mostly follow the pace of change in their local environmental conditions as the flash flood occurs, official flood anticipation being rather limited and based on a large-scale weather watch. Therefore, contextual factors appear as strongly influencing the individual's ability to cope with the event in such a situation

    HyMeX: A 10-Year Multidisciplinary Program on the Mediterranean Water Cycle

    Get PDF
    Drobinski, P. ... et. al.-- 20 pages, 10 figures, 1 table, supplement material http://journals.ametsoc.org/doi/suppl/10.1175/BAMS-D-12-00244.1HyMeX strives to improve our understanding of the Mediterranean water cycle, its variability from the weather-scale events to the seasonal and interannual scales, and its characteristics over one decade (2010–20), with a special focus on hydrometeorological extremes and the associated social and economic vulnerability of the Mediterranean territoriesHyMeX was developed by an international group of scientists and is currently funded by a large number of agencies. It has been the beneficiary of financial contributions from CNRS; Météo-France; CNES; IRSTEA; INRA; ANR; Collectivité Territoriale de Corse; KIT; CNR; Université de Toulouse; Grenoble Universités; EUMETSAT; EUMETNET; AEMet; Université Blaise Pascal, Clermont Ferrand; Université de la Méditerranée (Aix-Marseille II); Université Montpellier 2; CETEMPS; Italian Civil Protection Department; Université Paris- Sud 11; IGN; EPFL; NASA; New Mexico Tech; IFSTTAR; Mercator Ocean; NOAA; ENEA; TU Delft; CEA; ONERA; IMEDEA; SOCIB; ETH; MeteoCat; Consorzio LAMMA; IRD; National Observatory of Athens; Ministerio de Ciencia e Innovación; CIMA; BRGM; Wageningen University and Research Center; Department of Geophysics, University of Zagreb; Institute of Oceanography and Fisheries, Split, Croatia; INGV; OGS; Maroc Météo; DHMZ; ARPA Piemonte; ARPA-SIMC Emilia-Romagna; ARPA Calabria; ARPA Friuli Venezia Giulia; ARPA Liguria; ISPRA; University of Connecticut; Università degli Studi dell'Aquila; Università di Bologna; Università degli Studi di Torino; Università degli Studi della Basilicata; Università La Sapienza di Roma; Università degli Studi di Padova; Università del Salento; Universitat de Barcelona; Universitat de les Illes Balears; Universidad de Castilla-La Mancha; Universidad Complutense de Madrid; MeteoSwiss; and DLR. It also received support from the European Community's Seventh Framework Programme (e.g., PERSEUS, CLIM-RUN)Peer reviewe

    Contribution à la définition des caractéristiques d'un radar hydrologique urbain. Prévision de la pluie à très courte échéance

    Get PDF
    Mme Evelyne RICHARD, Rapporteur M. Guy DELRIEU, Rapporteur Mme Andrea FLOSSMANN, Examinateur Mme Véronique DUCROCQ, Examinateur Mme Jutta THIELEN, Examinateur M. Jacques TESTUD, Examinateur Mme Nadine CHAUMERLIAC, Directeur de thèse M. Hervé ANDRIEU, Directeur de thèseRainfall rate is an essential information in hydrology, in particular for urban or mountainous catchments. On these basins, reliable rainfall estimates as well as very short term rainfall forecasts are thus needed. Weather radar constitutes a solution to satisfy these needs. Unfortunately existing radars are not fully adapted to all the hydrological applications in terms of flexibility in use and space and temporal resolution. The development of X-band radars devoted to the specific needs of hydrology is considered. Their application conditions are to be defined. These studies addresse the estimate of voluminal and Doppler radar data for very short-term rainfall forecasting. The first part of the manuscript deals with the VIL radar measurement. In addition, it presents a method for the retrieval of horizontal wind field from Doppler data. The second part of the manuscript deals with the formulation and the estimate of a very short-term rainfall forecasting method based on VIL. This method is initially tested from simulated radar data in order to highlight the interest of the voluminal data independently of measurement errors. A case study is then undertaken on actual rain events recorded during the intensive observation period of MAP (Mesoscale Alpine Programme).L'intensité pluvieuse est une information essentielle en hydrologie, notamment pour les bassins versants situés en zone urbaine ou montagneuse. Il est donc nécessaire de disposer, sur ces bassins, d'estimations fiables des précipitations ainsi que de prévisions de la pluie à très courte échéance. Le radar météorologique constitue une solution à ces besoins. Toutefois les radars existants aujourd'hui ne sont pas totalement adaptés à toutes les applications hydrologiques en terme de souplesse d'utilisation et de résolution spatiale et temporelle. L'utilisation de radars de configuration légère en bande X, est envisagée pour les besoins de l'hydrologie urbaine. Les conditions d'utilisation de tels radars sont à définir. Ces études proposent d'évaluer l'intérêt de l'information radar volumique et Doppler pour la prévision des précipitations à très courte échéance. La première partie de la thèse s'intéresse à la mesure du VIL par radar. Elle présente également une méthode de restitution du champ de vitesse horizontale tirant parti de la mesure Doppler. La deuxième partie de la thèse concerne la formulation et l'évaluation d'une méthode de prévision de la pluie à très courte échéance reposant sur le VIL. Cette méthode est d'abord testée à l'aide de données radar simulées afin de mettre en évidence l'intérêt des données volumiques indépendamment des erreurs de mesure. Une étude de cas réel a été ensuite menée sur des événements pluvieux de la période spéciale d'observation de MAP (Mesoscale Alpine Programme)

    Variability of the spatial structure of intense Mediterranean precipitation

    Get PDF
    International audienceIntense Mediterranean precipitation can generate devastating flash floods. A better understanding of the spatial structure of intense rainfall is critical to better identify catchments that will produce strong hydrological responses. We focus on two intense Mediterranean rain events of different types that occured in 2002. Radar and rain gauge measurements are combined to have a data set with a high spatial (1 × 1 km2) and temporal (5 min) resolution. Two thresholds are determined using the quantiles of the rain rate values, corresponding to the precipitating system at large and to the intense rain cells. A method based on indicator variograms associated with the thresholds is proposed in order to automatically quantify the spatial structure at each time step during the entire rain events. Therefore, its variability within intense rain events can be investigated. The spatial structure is found to be homogeneous over periods that can be related to the dynamics of the events. Moreover, a decreasing time resolution (i.e., increasing accumulation period) of the rain rate data will stretch the spatial structure because of the advection of rain cells by the wind. These quantitative characteristics of the spatial structure of intense Mediterranean rainfall will be useful to improve our understanding of the dynamics of flash floods

    Evaluation of RadVil, a Radar-Based Very Short-Term Rainfall Forecasting Model

    No full text
    International audienceA very short-term rainfall forecast model is tested on actual radar data. This model, called RadVil, takes advantages of voluminal radar data through vertically integrated liquid (VIL) water content measurements. The model is tested on a dataset collected during the intensive observation period of the Mesoscale Alpine Program (MAP). Five rain events have been studied during this experiment. The results confirm the interest of VIL for quantitative precipitation forecasting at very short lead time. The evaluation is carried out in qualitative and quantitative ways according to Nash and correlation criteria on forecasting times ranging from 10 to 90 min and spatial scales from 4 to 169 km2. It attempts to be consistent with the hydrological requirements concerning the rainfall forecasting, for instance, by taking account of the relation between the catchments' size, their response time, and the required forecasting time. Several versions of RadVil corresponding to several VIL measurement strategies have been tested. Improvements offered by RadVil depend on meteorological situations. They are related to the spatial and temporal evolution of the VIL field structure and the validity of the models assumptions. Finally, a relationship between the temporal structure of VIL fields and forecast quality is established
    • …
    corecore