43 research outputs found

    GABA transporter function, oligomerization state, and anchoring: correlates with subcellularly resolved FRET

    Get PDF
    The mouse γ-aminobutyric acid (GABA) transporter mGAT1 was expressed in neuroblastoma 2a cells. 19 mGAT1 designs incorporating fluorescent proteins were functionally characterized by [^3H]GABA uptake in assays that responded to several experimental variables, including the mutations and pharmacological manipulation of the cytoskeleton. Oligomerization and subsequent trafficking of mGAT1 were studied in several subcellular regions of live cells using localized fluorescence, acceptor photobleach Förster resonance energy transfer (FRET), and pixel-by-pixel analysis of normalized FRET (NFRET) images. Nine constructs were functionally indistinguishable from wild-type mGAT1 and provided information about normal mGAT1 assembly and trafficking. The remainder had compromised [^3H]GABA uptake due to observable oligomerization and/or trafficking deficits; the data help to determine regions of mGAT1 sequence involved in these processes. Acceptor photobleach FRET detected mGAT1 oligomerization, but richer information was obtained from analyzing the distribution of all-pixel NFRET amplitudes. We also analyzed such distributions restricted to cellular subregions. Distributions were fit to either two or three Gaussian components. Two of the components, present for all mGAT1 constructs that oligomerized, may represent dimers and high-order oligomers (probably tetramers), respectively. Only wild-type functioning constructs displayed three components; the additional component apparently had the highest mean NFRET amplitude. Near the cell periphery, wild-type functioning constructs displayed the highest NFRET. In this subregion, the highest NFRET component represented ~30% of all pixels, similar to the percentage of mGAT1 from the acutely recycling pool resident in the plasma membrane in the basal state. Blocking the mGAT1 C terminus postsynaptic density 95/discs large/zona occludens 1 (PDZ)-interacting domain abolished the highest amplitude component from the NFRET distributions. Disrupting the actin cytoskeleton in cells expressing wild-type functioning transporters moved the highest amplitude component from the cell periphery to perinuclear regions. Thus, pixel-by-pixel NFRET analysis resolved three distinct forms of GAT1: dimers, high-order oligomers, and transporters associated via PDZ-mediated interactions with the actin cytoskeleton and/or with the exocyst

    Amphetamine-induced decreases in dopamine transporter surface expression are protein kinase C-independent

    No full text
    Amphetamine (AMPH) is a potent dopamine (DA) transporter (DAT) inhibitor that markedly increases extracellular DA levels. In addition to its actions as a DAT antagonist, acute AMPH exposure induces DAT losses from the plasma membrane, implicating transporter-specific membrane trafficking in amphetamine\u27s actions. Despite reports that AMPH modulates DAT surface expression, the trafficking mechanisms leading to this effect are currently not defined. We recently reported that DAT residues 587-596 play an integral role in constitutive and protein kinase C (PKC)-accelerated DAT internalization. In the current study, we tested whether the structural determinants required for PKC-stimulated DAT internalization are necessary for AMPH-induced DAT sequestration. Acute amphetamine exposure increased DAT endocytic rates, but DAT carboxy terminal residues 587-590, which are required for PKC-stimulated internalization, were not required for AMPH-accelerated DAT endocytosis. AMPH decreased DAT endocytic recycling, but did not modulate transferrin receptor recycling, suggesting that AMPH does not globally diminish endocytic recycling. Finally, treatment with a PKC inhibitor demonstrated that AMPH-induced DAT losses from the plasma membrane were not dependent upon PKC activity. These results suggest that the mechanisms responsible for AMPH-mediated DAT internalization are independent from those governing PKC-sensitive DAT endocytosis

    Dopamine transporter endocytic determinants: carboxy terminal residues critical for basal and PKC-stimulated internalization

    No full text
    Dopamine (DA) reuptake terminates dopaminergic neurotransmission and is mediated by DA transporters (DATs). Acute protein kinase C (PKC) activation accelerates DAT internalization rates, thereby reducing DAT surface expression. Basal DAT endocytosis and PKC-stimulated DAT functional downregulation rely on residues within the 587-596 region, although whether PKC-induced DAT downregulation reflects transporter endocytosis mechanisms linked to those controlling basal endocytosis rates is unknown. Here, we define residues governing basal and PKC-stimulated DAT endocytosis. Alanine substituting DAT residues 587-590 1) abolished PKC stimulation of DAT endocytosis, and 2) markedly accelerated basal DAT internalization, comparable to that of wildtype DAT during PKC activation. Accelerated basal DAT internalization relied specifically on residues 588-590, which are highly conserved among SLC6 neurotransmitter transporters. Our results support a model whereby residues within the 587-590 stretch may serve as a locus for a PKC-sensitive braking mechanism that tempers basal DAT internalization rates

    Dissolution and electrochemical properties of molybdenum carbide (Mo2C) in basic solutions

    No full text
    The dissolution and electrochemical properties of molybdenum carbide were investigated using a number of electrochemical techniques, including general corrosion tests (GCT), linear voltammetry (LV), potential controlled electrolysis (PCE) and Scanning Electrochemical Microscopy (SECM), in basic media (0.5−4 M NaOH and 1 M NaHCO3/Na2CO3, pH 9.1–11.3). It was shown that the Mo2C corrosion potential (Ecorr) shifted towards negative values from -0.39 to -0.96 V/SCE with an increase of the OH- concentration and did not depend on the CO32- concentration in the electrolyte. LV measurements in carbonate buffer (pH 9.2), evidenced three potential regions: passivation from Ecorr to -0.2 V/SCE, pseudopassivation from -0.25 to 0 V/SCE and anodic dissolution (transpassivation) at E > 0.1 V/SCE. The potentials delimiting the mentioned regions decreased with the increase of the OH- concentration, becoming undistinguished in 2 M NaOH. The Mo2C dissolution rate (kdiss) in the transpassive state was estimated using LV data. In 4 M NaOH at -0.1 V/SCE, kdiss reached 430 mg cm-2 h-1 and decreased with the decrease of the OH- concentration and the electrolysis potential. The Mo2C dissolution current efficiency varied between 12 and 13 F mol-1 Mo2C, proving the formation of the intermediate products of a carbon oxidative degradation during PCE. The presence of C2O42- and non-identified aromatic compounds in the electrolytes after Mo2C dissolution was ascertained, using capillary zone electrophoresis. Scanning electrochemical microscopy (SECM) confirmed the formation of a pseudopassive film and demonstrated the increase of its thickness with the increase of the applied potential. The effect of the presence of Mo2C on the irradiated UC fuel dissolution rate and the mechanisms involved are discussed

    Site-Specific Antibody Conjugation to Engineered Double Cysteine Residues

    No full text
    Site-specific antibody conjugations generate homogeneous antibody-drug conjugates with high therapeutic index. However, there are limited examples for producing the site-specific conjugates with a drug-to-antibody ratio (DAR) greater than two, especially using engineered cysteines. Based on available Fc structures, we designed and introduced free cysteine residues into various antibody CH2 and CH3 regions to explore and expand this technology. The mutants were generated using site-directed mutagenesis with good yield and properties. Conjugation efficiency and selectivity were screened using PEGylation. The top single cysteine mutants were then selected and combined as double cysteine mutants for expression and further investigation. Thirty-six out of thirty-eight double cysteine mutants display comparable expression with low aggregation similar to the wild-type antibody. PEGylation screening identified seventeen double cysteine mutants with good conjugatability and high selectivity. PEGylation was demonstrated to be a valuable and efficient approach for quickly screening mutants for high selectivity as well as conjugation efficiency. Our work demonstrated the feasibility of generating antibody conjugates with a DAR greater than 3.4 and high site-selectivity using THIOMABTM method. The top single or double cysteine mutants identified can potentially be applied to site-specific antibody conjugation of cytotoxin or other therapeutic agents as a next generation conjugation strategy
    corecore