48 research outputs found

    Trajectory analysis of land use and land cover maps to improve spatial-temporal patterns, and impact assessment on groundwater recharge

    Get PDF
    © 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 24 month embargo from date of publication (Sept 2017) in accordance with the publisher’s archiving policyLand use/land cover (LULC) change is a consequence of human-induced global environmental change. It is also considered one of the major factors affecting groundwater recharge. Uncertainties and inconsistencies in LULC maps are one of the difficulties that LULC timeseries analysis face and which have a significant effect on hydrological impact analysis. Therefore, an accuracy assessment approach of LULC timeseries is needed for a more reliable hydrological analysis and prediction. The objective of this paper is to assess the impact of land use uncertainty and to improve the accuracy of a timeseries of CORINE (coordination of information on the environment) land cover maps by using a new approach of identifying spatial–temporal LULC change trajectories as a pre-processing tool. This ensures consistency of model input when dealing with land-use dynamics and as such improves the accuracy of land use maps and consequently groundwater recharge estimation. As a case study the impact of consistent land use changes from 1990 until 2013 on groundwater recharge for the Flanders-Brussels region is assessed. The change trajectory analysis successfully assigned a rational trajectory to 99% of all pixels. The methodology is shown to be powerful in correcting interpretation inconsistencies and overestimation errors in CORINE land cover maps. The overall kappa (cell-by-cell map comparison) improved from 0.6 to 0.8 and from 0.2 to 0.7 for forest and pasture land use classes respectively. The study shows that the inconsistencies in the land use maps introduce uncertainty in groundwater recharge estimation in a range of 10–30%. The analysis showed that during the period of 1990–2013 the LULC changes were mainly driven by urban expansion. The results show that the resolution at which the spatial analysis is performed is important; the recharge differences using original and corrected CORINE land cover maps increase considerably with increasing spatial resolution. This study indicates that improving consistency of land use map timeseries is of critical importance for assessing land use change and its environmental impact

    An Earth observation based method to assess the influence of seasonal dynamics of canopy interception storage on the urban water balance

    Get PDF
    Vegetation is often represented in an oversimplified way in hydrological models for urbanised catchments, resulting in a generalised parameterisation of urban green. This is common practice, despite the fact that some studies clearly indicate that both the coverage and influence of urban green is often underestimated. In general vegetated surfaces play an important role as areas of recharge, for the redistribution of precipitation and in the regulation of surface runoff, especially for medium intensity storms. Hence, a more realistic and spatially distributed vegetation parameterisation would be of high value for hydrological modelling in urban catchments. In this paper an Earth observation based methodology is presented as an alternative to quantify the influence of canopy interception storage as well as the influence of seasonal dynamics on the urban water balance. Results indicate that Earth observation based interception storage capacities for the Upper Woluwe catchment (Brussels) are up to 25% higher than values obtained from literature, resulting in an increase of cumulative interception rates with 10% over a two year period. The results seem to vary with the rainfall intensity as well as with seasonal dynamics. In order to prove the general applicability of the proposed approach, these results need further confirmation using multi-year analyses and preferably a validation with ground truthing, which is a challenging future task.In een stedelijke context wordt vegetatie vaak op een overmatig eenvoudige manier voorgesteld in hydrologische modellen. Dit resulteert meestal in een zeer ruwe parameterisering van urbaan groen. Deze benadering is wijd verspreid, ondanks het feit dat studies aantonen dat zowel de dekking, als de invloed van stedelijk groen vaak onderschat wordt. Begroeide oppervlakken spelen een belangrijke rol inzake infiltratie in de bodem en de aanvulling van grondwater, de herverdeling van neerslag en de regulering van oppervlakkige afvoer, in het bijzonder voor middelgrote stormen. Dit maakt dat een meer realistische en ruimtelijk verdeelde parameterisering van urbane vegetatie van grote waarde kan zijn voor de modellering van stedelijke waterbekkens. In deze paper wordt een aardobservatie gebaseerde methode voorgesteld voor de kwantificering van interceptie door het stedelijk landschap (vnl. vegetatieve landschapselementen zoals bomen, struiken, etc.), alsook de seizoenale dynamiek en de invloed op de stedelijke waterbalans. De resultaten tonen dat de aardobservatie gebaseerde interceptie in het bovenstrooms gedeelte van het Woluwe-bekken (Brussel) tot 25% hoger liggen dan de waarden gebaseerd op literatuur. Over een periode van 2 jaar betekent dit een toename met 10% van de cumulatieve interceptie. De interceptiewaarden blijken ook te variëren in functie van de neerslagintensiteit en vertonen een seizoenale dynamiek. Een meerjarige analyse, bij voorkeur met grondmetingen, is noodzakelijk om de bekomen resultaten te bevestigen, wat een uitdaging vormt voor de toekomst

    A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland

    Get PDF
    This paper presents a hierarchical approach for quantifying and interpreting groundwater-surface water interaction in space and time. The results for the upper Biebrza show predominantly upward water fluxes, sections of recharge, however, exist along the reach. The fluxes depend more on hydraulic gradients than on riverbed conductivity. This indicates that the fluvio-plain scale is required for interpreting the exchange fluxes, which are estimated on a local scale. The paper shows that a conceptual framework is necessary for understanding the groundwater-surface water interaction processes, where the exchange fluxes are influenced by local factors like the composition of the riverbed and the position of the measurement on a local scale, and by regional factors like the hydrogeology and topography on a fluvio-plain scale. The hierarchical methodology increases the confidence in the estimated exchange fluxes and improves the process understanding. The accuracy of the measurements and related uncertainties, however, remain challenges for wetland environments. Gaining quantitative information on groundwatersurface water interaction can improve modeling confidence and as a consequence helps to develop effective procedures for management and conservation of valuable groundwater dependent wetlands

    How Can We Represent Seasonal Land Use Dynamics in SWAT and SWAT+ Models for African Cultivated Catchments?

    Get PDF
    This research article published by MDPI, 2020In SWAT and SWAT+ models, the variations in hydrological processes are represented by Hydrological Response Units (HRUs). In the default models, agricultural land cover is represented by a single growing cycle. However, agricultural land use, especially in African cultivated catchments, typically consists of several cropping seasons, following dry and wet seasonal patterns, and are hence incorrectly represented in SWAT and SWAT+ default models. In this paper, we propose a procedure to incorporate agricultural seasonal land-use dynamics by (1) mapping land-use trajectories instead of static land-cover maps and (2) linking these trajectories to agricultural management settings. This approach was tested in SWAT and SWAT+ models of Usa catchment in Tanzania that is intensively cultivated by implementing dominant dynamic trajectories. Our results were evaluated with remote-sensing observations for Leaf Area Index (LAI), which showed that a single growing cycle did not well represent vegetation dynamics. A better agreement was obtained after implementing seasonal land-use dynamics for cultivated HRUs. It was concluded that the representation of seasonal land-use dynamics through trajectory implementation can lead to improved temporal patterns of LAI in default models. The SWAT+ model had higher flexibility in representing agricultural practices, using decision tables, and by being able to represent mixed cropping cultivations

    Drought in the Anthropocene

    Get PDF
    Drought management is inefficient because feedbacks between drought and people are not fully understood. In this human-influenced era, we need to rethink the concept of drought to include the human role in mitigating and enhancing drought

    Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches

    Get PDF
    In the current human-modified world, or Anthropocene, the state of water stores and fluxes has become dependent on human as well as natural processes. Water deficits (or droughts) are the result of a complex interaction between meteorological anomalies, land surface processes, and human inflows, outflows, and storage changes. Our current inability to adequately analyse and manage drought in many places points to gaps in our understanding and to inadequate data and tools. The Anthropocene requires a new framework for drought definitions and research. Drought definitions need to be revisited to explicitly include human processes driving and modifying soil moisture drought and hydrological drought development. We give recommendations for robust drought definitions to clarify timescales of drought and prevent confusion with related terms such as water scarcity and overexploitation. Additionally, our understanding and analysis of drought need to move from single driver to multiple drivers and from uni-directional to multi-directional. We identify research gaps and propose analysis approaches on (1) drivers, (2) modifiers, (3) impacts, (4) feedbacks, and (5) changing the baseline of drought in the Anthropocene. The most pressing research questions are related to the attribution of drought to its causes, to linking drought impacts to drought characteristics, and to societal adaptation and responses to drought. Example questions include: (i) What are the dominant drivers of drought in different parts of the world? (ii) How do human modifications of drought enhance or alleviate drought severity? (iii) How do impacts of drought depend on the physical characteristics of drought vs. the vulnerability of people or the environment? (iv) To what extent are physical and human drought processes coupled, and can feedback loops be identified and altered to lessen or mitigate drought? (v) How should we adapt our drought analysis to accommodate changes in the normal situation (i.e. what are considered normal or reference conditions) over time? Answering these questions requires exploration of qualitative and quantitative data as well as mixed modelling approaches. The challenges related to drought research and management in the Anthropocene are not unique to drought, but do require urgent attention. We give recommendations drawn from the fields of flood research, ecology, water management, and water resources studies. The framework presented here provides a holistic view on drought in the Anthropocene, which will help improve management strategies for mitigating the severity and reducing the impacts of droughts in future

    Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches

    Get PDF
    In the current human-modified world, or Anthropocene, the state of water stores and fluxes has become dependent on human as well as natural processes.Water deficits (or droughts) are the result of a complex interaction between meteorological anomalies, land surface processes, and human inflows, outflows, and storage changes. Our current inability to adequately analyse and manage drought in many places points to gaps in our understanding and to inadequate data and tools. The Anthropocene requires a new framework for drought definitions and research. Drought definitions need to be revisited to explicitly include human processes driving and modifying soil moisture drought and hydrological drought development. We give recommendations for robust drought definitions to clarify timescales of drought and prevent confusion with related terms such as water scarcity and overexploitation. Additionally, our understanding and analysis of drought need to move from single driver to multiple drivers and from uni-directional to multi-directional. We identify research gaps and propose analysis approaches on (1) drivers, (2) modifiers, (3) impacts, (4) feedbacks, and (5) changing the baseline of drought in the Anthropocene. The most pressing research questions are related to the attribution of drought to its causes, to linking drought impacts to drought characteristics, and to societal adaptation and responses to drought. Example questions include (i) What are the dominant drivers of drought in different parts of the world? (ii) How do human modifications of drought enhance or alleviate drought severity? (iii) How do impacts of drought depend on the physical characteristics of drought vs. the vulnerability of people or the environment? (iv) To what extent are physical and human drought processes coupled, and can feedback loops be identified and altered to lessen or mitigate drought? (v) How should we adapt our drought analysis to accommodate changes in the normal situation (i.e. what are considered normal or reference conditions) over time

    Hyperspectrale aardobservatie van vegetatie, bodemvocht en verdamping voor ecohydrologische karakterisatie

    No full text
    status: publishe

    Location- and Time-Specific Hydrological Simulations with Multi-Resolution Remote Sensing Data in Urban Areas

    No full text
    A major challenge in hydrologic modeling remains the mapping of vegetation dynamics in an urban landscape. The impact of vegetation on interception storage varies over time and needs to be quantified in order to enable proper management of water resources in urban areas. However, the heterogeneity and complexity of the urban landscape makes it challenging to monitor urban vegetation. A more detailed spatial and temporal scale is needed. To characterize surface cover at a high spatial resolution, a hyperspectral APEX image (2 m) is used, while a time series of Proba-V images (daily, 100 m) allows a detailed characterization of the seasonal variation of urban greenness. For this study, we use and validate the leaf area index (LAI) maps derived from APEX and Proba-V data for a selected pixel in the Watermaelbeek catchment in Brussels (Belgium). The ground-truthing of the Proba-V pixels includes a detailed mapping of land cover characteristics and more specifically vegetation cover throughout the seasons. LAI values calculated based on the APEX image agree with the LAI values measured from the ground (n = 106, R 2 = 0.68). Further, the aggregated APEX pixels correlate with the Proba-V pixels ( R 2 = 0.79), and the Proba-V data can be used to monitor vegetation dynamics. As the seasonal LAI measurements correspond with the Proba-V dynamics, we conclude that Proba-V images allow the characterization of vegetation dynamics at a high spatial resolution in heterogeneous areas. We create a time series of LAI maps at a high resolution (2 m), which allows a location- and time-specific simulation of interception storage and thus contributes to managing water resources in urban areas

    Using Remote Sensing Based Metrics to Quantify the Hydrological Response in a City

    No full text
    We propose a remote-sensing based metric approach to evaluate the hydrological response of highly urbanized areas and apply it to the city of Brussels. The model is set-up using 2 m resolution hyperspectral data. Next, it is upscaled to the city level, using multi-spectral Sentinel-2 data with 20 m resolution. We identify the total impervious area, the vegetation cover and the leaf area index as important metrics to derive a timeseries of spatially distributed net rainfall, runoff and infiltration from rainfall data. For the estimation of the actual evapotranspiration we use the potential evapotranspiration and the available water storage based on the interception, the depression storage and the infiltration. Additionally, we route the runoff to the outlet of selected sub-catchments. An important metric for the routing is the timing to the outlet which is approximated using the total impervious area and the hydrological distance to the outlet. We compare our approach to WetSpa model simulations and reach R 2 values of 98% for net rainfall, 95% for surface runoff, 99% for infiltration and 97% for cumulative evapotranspiration. The routing in the Watermaelbeek catchment is evaluated with discharge observations and reaches NSE values of 0.89 at a 2 m resolution and 0.88 at a 20 m resolution using an hourly timestep. At the timestep of 10 min and a 20 m resolution the NSE is reduced to 0.76. For the Roodebeek catchment we reach an NSE of 0.73 at a spatial resolution of 20 m and an hourly timestep. The results presented in this paper are optimistic for using spatial and temporal metrics retrieved from remote sensing data to quantify the water balance of urban catchments
    corecore