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Abstract: In SWAT and SWAT+ models, the variations in hydrological processes are represented by
Hydrological Response Units (HRUs). In the default models, agricultural land cover is represented by
a single growing cycle. However, agricultural land use, especially in African cultivated catchments,
typically consists of several cropping seasons, following dry and wet seasonal patterns, and are hence
incorrectly represented in SWAT and SWAT+ default models. In this paper, we propose a procedure
to incorporate agricultural seasonal land-use dynamics by (1) mapping land-use trajectories instead
of static land-cover maps and (2) linking these trajectories to agricultural management settings.
This approach was tested in SWAT and SWAT+ models of Usa catchment in Tanzania that is
intensively cultivated by implementing dominant dynamic trajectories. Our results were evaluated
with remote-sensing observations for Leaf Area Index (LAI), which showed that a single growing cycle
did not well represent vegetation dynamics. A better agreement was obtained after implementing
seasonal land-use dynamics for cultivated HRUs. It was concluded that the representation of seasonal
land-use dynamics through trajectory implementation can lead to improved temporal patterns of LAI
in default models. The SWAT+ model had higher flexibility in representing agricultural practices,
using decision tables, and by being able to represent mixed cropping cultivations.

Keywords: SWAT; SWAT+; Hydrologic Response Units; land-use dynamics; land-use trajectories

1. Introduction

Agricultural land-use area and production has more than trebled around the globe since 1961 [1].
In Sub-Saharan African countries like Tanzania, intensive agriculture that depends on the alternation
between rainfed and irrigation serves as the main land use for both food security and economic
growth [2]. The alternations in land use throughout the year, usually relying on the weather conditions,
is referred to as land-use dynamics [3]. Land-use dynamics in agriculture often occur as multiple
cropping cycles accompanied by different management practices, such as irrigation and fertilization.
In African cultivated catchments, agricultural land-use dynamics are usually attributed to the high
variability in seasonal weather patterns (wet and dry seasons) throughout the year [3].

Agricultural land-use dynamics impact watershed hydrology; hence, knowledge about these
land-use dynamics is essential for sustainable watershed management and land-use planning [4].
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According to [5,6], agricultural land-use dynamics influence the hydrological water-balance components
such as evapotranspiration (ET) and infiltration by affecting water entry and retention in the soil.
Munish and Sawere, [7] also underlined the importance of understanding agricultural land-use
dynamics that have contributed to a consistent decline of water from the Kikuletwa river within the
Kikuletwa catchment in Pangani Basin, Tanzania. Dakhlalla et al., [8] further recognized the impact of
agricultural land-use dynamics, specifically crop rotations, on the ET and groundwater storage within
an agricultural watershed.

Hydrological models are often employed to understand and quantify the hydrological processes
under the influence of different agricultural land-use dynamics. Lambin et al., [9] points out that
process-based (dynamic) models like the Soil and Water Assessment Tool (SWAT; [10]) and an
improved version of SWAT (SWAT+; [11]), which were selected for this research are best suited for
agricultural land-use studies at the catchment scale. Gassman et al., [12] further highlights that
the major advantage of SWAT is its versatile structure that allows for the simulation of a wide
variety of agricultural-management practices, such as fertilizer application, irrigation management,
and conservation tillage. However, it is worth noting that the general applicability of SWAT all over the
globe has been questioned in some catchments outside the US, since some processes have an empirical
background derived from large datasets in the US [13,14]. Nevertheless, users need to redefine some of
these processes for regional needs (e.g., [15,16]). One may also wonder whether agricultural land-use
processes in default model setups are applicable for African cultivated catchments.

Representation of agricultural land use in SWAT has been applied only in the form of crop
rotations [17–19] outside African catchments. These studies concluded that the inclusion of crop
rotations improved the representation of hydrological processes in the catchment. However, for African
cultivated catchments, representation of agricultural land-use dynamics in SWAT has attracted little
attention. Griensven et al., [14] concluded that SWAT applications in the upper Nile basin countries
did not report any vegetation or agricultural processes or associated output, such as yield, biomass
and LAI. They further concluded that this made it challenging to ascertain whether the models used
gave a proper representation of the land-use management and crop parameters.

According to Neitsch et al., [20], SWAT by default simulates agricultural land covers with a single
growing cycle every year. Only a limited number of SWAT applications in agricultural catchments have
represented land-use dynamics in a yearly or multi-yearly crop rotation pattern, and no attention has
been given to seasonal agricultural land-use dynamics within a year in tropical areas. Single growing
cycles are not realistic in African cultivated catchments that typically have multiple cropping seasons
throughout the year, such as the Kikuletwa catchment [3]. There has also been no linkage of representing
land-use dynamics to the land-use classes during the model set ups in previous studies. This has
created a gap in representing multiple cropping seasons by the default SWAT model. Studies such as
that by Strauch and Volk, [21] attributed this gap to the focus on only discharge (i.e., not plant growth)
during model calibration and validation. In contrast, White et al., [22] attributed this gap to the lack
of agricultural data to generate more accurate inputs. However, both studies stressed that SWAT
models can achieve a good calibration, but this does not mean that there is an accurate representation
of internal catchment processes such as vegetation dynamics.

Vegetation is a vital factor in estimating ET, which is a key component of the catchment water
balance [23]. Wegehenkel, [24] urges the inclusion of temporal dynamics of vegetation in hydrological
models if the models are to be used for water-balance studies. The most commonly used vegetation
attribute in hydrological models is the LAI, which accounts for temporal variations in vegetation
characteristics [15,25,26]. Several studies have emphasized the integration of temporal land-use
dynamics and spatial resolution to precisely represent the interactions within a catchment [27–30].
However, all these studies have focused on land-use/land-cover (LULC) changes after several years,
and not seasonal land-use dynamics within a year. Pai and Saraswat, [31] further developed a tool to
incorporate multiple land uses within model simulation in SWAT, yet with limitations in introducing
new land uses after model delineation.
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This study proposes an approach to represent the agricultural seasonal land-use dynamics in
the SWAT and SWAT+ models by linking land-use maps with land-use dynamics through land-use
trajectories, as opposed to land-cover classes. Land-use trajectories can be used in the identification of
temporal paths of land-use changes through sequential transitions over an observation period [32].
The concept of trajectory has been applied in several studies, to analyze spatial and temporal shifts in
land use [33,34].

Consequently, the land-use-trajectory approach is used to represent different cropping seasons,
using the SWAT and SWAT+ models, for the Usa catchment in Tanzania. Precisely, the dominant
dynamic trajectories are initially generated then manually incorporated into SWAT and SWAT+ models.
The model outputs are evaluated with remote-sensing LAI products.

2. Materials and Methods

2.1. Case Study Description

The Kikuletwa river basin is in the western headwaters of the River Pangani and covers an area
of 6765 km2 with elevation ranging from 700 to 6000 m a.s.l. The Usa catchment, shown in Figure 1,
within the Kikuletwa river basin was selected for this study. The Usa catchment covers an area of
240 km2. The average rainfall within the basin ranges from 300 to 800 mm/year in the lower basin
areas and 1200 to 2000 mm/year in the upper basin areas of the Meru and Kilimanjaro mountains [3].
Rainfall has a bimodal pattern, with rains occurring from March to May (Masika season) and rains
occurring from November to December (Vuli season) [35]. The short rains in the Vuli season and the
dry season are complemented with irrigation, using a traditional furrow system [36]. The maximum
and minimum temperature ranges are 15 to 30 ◦C and 12 to 18 ◦C, respectively.
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Land uses in the catchment include agricultural land, urban land, dense forests, grazed land,
and shrubland. The dominant land-use types are rainfed and supplementary irrigated croplands,
shrubland, and grassland [35]. The selection of the Usa catchment was based on the intensive
agricultural activities taking place and the availability of seasonal land-use maps for March, August,
and October 2016 [3].

2.2. Input Data

Data used for this study were obtained from different sources (local, national, and global datasets)
and preprocessed, to make them usable for this study. Rainfall and temperature data from ground
observation stations were collected from the Tanzania Meteorological Agency (TMA) for the period of
2006 through 2016. Three seasonal land-use maps for March, August, and October 2016 were obtained
from [3]. However, the March and August maps had some unclassified pixels in the uplands which
corresponded to the dense forest land-use pixels in the October map. These unclassified pixels were
replaced with corresponding pixels from the October map, assuming that the dense forest land-use
remains constant throughout the year. The soil map for the Usa catchment was obtained from FAO,
SOTER (Soil and Terrain) database for Africa, at a coarse resolution of 1 km. The types of soils classified
within the catchment were loam soil and clay loam soil. A Digital Elevation Model (DEM) that provides
the physical characteristics of the study area was obtained from SRTM (Shuttle Radar Topography
Mission), at a 30 m resolution.

2.3. SWAT and SWAT+ Models

SWAT is a semi-distributed river basin scale model that relies on the physical characteristics of
a catchment. The model assesses impacts of different management decisions on water resources in
watersheds with diverse land-use, soil, and management applications [37]. SWAT requires soil, weather,
land-use, management, and topographic data for input irrespective of the application. However,
management data, such as irrigation schedules, planting and harvesting dates, fertilization-application
timings, and amounts, are the most challenging and difficult SWAT data to acquire and process [22].

SWAT+ is a revised version of SWAT that offers extra flexibility in connecting spatial units
in the representation of management operations [11]. SWAT+ provides an improved simulation of
landscape locations, overland routing, and floodplain processes. Land-use and management operations
(e.g., irrigation, fertilization, and reservoir regulation) can be scheduled by using decision tables in
SWAT+. This enables the user to add complex conditions during management scheduling, such as
crop types or water availability in reservoirs, which is not possible in present models [38].

In both SWAT and SWAT+ models, the hydrological processes are represented by the variations
in the HRUs consisting of unique land-use, slope, soil and management applications linked through a
Geographic Information System (GIS) interface. In both models, a watershed is delineated into several
sub-basins that are further subdivided into HRUs, using a GIS interface [39]. The models apply the
water-balance concept as the basic driver of all hydrological processes in the catchment, as represented
by Equation (1).

SWt = SWo +
∑

(Vi −Qi − Ei − Pi −QRi ) × ∆t (1)

where SWt and SWo are the final and initial soil water content, respectively (mm/day); Vi is the
amount of precipitation (mm/day); Qi is the amount of surface runoff (mm/day); Ei is the amount of
ET (mm/day); Pi is the amount of percolation (mm/day); QRi is the amount of return flow (mm/day);
and ∆t is change in time (day) and i is the index.

2.4. Land-Use Trajectory

All seasonal land-use maps were integrated in GIS, in a raster format, and land-use-trajectory
change in Usa catchment was analyzed pixel by pixel, using the overlay analysis, as applied in [32].
Trajectories from the three land-use maps (March, August, and October) of Usa catchment were
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generated with the corresponding land-use codes described in Table 1 and Figure 2. For example,
as highlighted in Figure 2, a trajectory can be identified as 6→ 4→ 13, which means land-use changes
from rainfed maize to bare land to irrigated mixed crops in March, August, and October maps,
respectively. A total of 1160 trajectories were generated. However, some trajectories were unrealistic,
such as a change from irrigated mixed crops land use in March to dense forest land use in August
and to rainfed maize land use in October. These unrealistic trajectories, as well as the trajectories that
took a small percentage of the overall trajectories, were excluded. Of the 1160 trajectories, the top
130 trajectories, covering about 90% of the whole catchment, were considered.

Table 1. Land use and the corresponding trajectory codes.

Land Use Land-Use Code Land Use Land-Use Code

Water 1 grazed woodland 11
grazed shrubland 2 protected woodland 12
grazed grassland 3 irrigated mixed crops 13

bare land 4 irrigated banana and coffee 15
spare vegetation 5 irrigated banana, coffee and maize 16

rainfed maize 6 waterweed 17
irrigated sugarcane 7 urban buildings 18
afro-alpine forest 8 sparse vegetation or bare land 19
sub-alpine forest 9 shrubland or/and thickets 20

sub-alpine bushland 10 dense forest 21
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Figure 2. Land-use trajectories in the Usa catchment, Tanzania.

A distinction between static and dynamic trajectories was made, to characterize the seasonal
changes in the land-use maps. The static trajectories are the continuous trajectories that remained
constant in all the seasonal land-use maps, such as 21 → 21 → 21, corresponding to dense forest
throughout the land-use maps, while the dynamic trajectories are the discontinuous trajectories that
changed in the different seasonal land-use maps. There were 9 static trajectories that constituted
36.9% of the catchment and 121 dynamic trajectories that covered 53.4% of the catchment of the top
130 trajectories, indicating an intensive agricultural seasonal cycle throughout the year. The dominant
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static and dynamic trajectories are shown in Tables 2 and 3, respectively. Since the study’s focus was
on the seasonal land-use dynamics, the top two dynamic trajectories in Table 3, 6→ 13→ 13 (rainfed
maize to irrigated mixed crops to irrigated mixed crops) and 16→ 15→ 16 (irrigated banana, coffee
and maize to irrigated banana and coffee to irrigated banana, coffee and maize), were selected for
representation in the SWAT and SWAT+ models.

Table 2. The major static trajectories.

Dominant Static Trajectories % Area to Static Trajectories

21→ 21→ 21 58.58
12→ 12→ 12 33.51

8→ 8→ 8 2.24
9→ 9→ 9 1.67

20→ 20→ 20 1.33

The numbers in the trajectories represent the land-use codes described in Table 1. The arrows signify a change from
one land use to another.

Table 3. The major dynamic trajectories.

Dominant Dynamic Trajectories % Area to Dynamic Trajectories

6→ 13→ 13 31.1
16→ 15→ 16 27.9
15→ 15→ 16 5.94
7→ 13→ 13 2.34
13→ 4→ 13 1.85

The numbers in the trajectories represent the land-use codes described in Table 1.

2.5. Model Configuration

Both SWAT and SWAT+ models were set up using the DEM, soil map, land-use map created
for March 2016, and ground observation weather data of rainfall and temperature. Other weather
parameters (wind speed, solar radiation, and humidity) were simulated by using an inbuilt weather
generator in SWAT and SWAT+ models. The Climate Forecast System Reanalysis (CFSR) data [40,41],
at a horizontal resolution of about 38 km, from 1979 to 2013, at a daily time step, were used in the
SWAT weather generator, which has proved to be a valuable dataset in African data-scarce basins [42].
Due to the unavailability of several observed climate parameters, the Hargreaves method [43], which
is temperature based, was selected to calculate the potential evapotranspiration. Within data-scarce
East African catchments, the Hargreaves method has proved to give realistic estimations of PET [44].
The USDA Soil Conservation Service (SCS) curve number method was used to estimate surface runoff

and variable storage method selected for flow routing in the channel.
No threshold was set for land use, soil, and slope during the HRU definition, so that all information

about the catchment landscape could be captured. For the SWAT model, 9 sub-basins and 130 HRUs
were generated, while for the SWAT+ model, 9 sub-basins, 9 landscape units, and 127 HRUs were
generated in the default model setups. The differences in the number of HRUs could be attributed to
the creation of HRUs through the sub-basins for the SWAT model, while the SWAT+ uses the landscape
units to create the HRUs. However, both models generated 10 HRUs for the rainfed maize land use
(Figure 3a) and 11 HRUs for the irrigated banana, coffee, and maize land use (Figure 3b), which were
the HRUs of interest.

Both models (SWAT and SWAT+) were not calibrated but checked for water-balance estimations,
as the study was not focusing on the simulation of flow but rather on improved representation of the
crop and agricultural land-use dynamics in default model setups, which should in fact precede any
calibration efforts. However, the BLAI (potential maximum leaf area index) for maize was adjusted to
correspond with the field measurements made in the catchment.
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banana and coffee to irrigated banana, coffee, and maize trajectory.

2.6. Land-Use-Trajectory Implementation in the Models

2.6.1. Management Schedule Overview in Usa Catchment

In the Usa catchment, agricultural land uses follow different cropping patterns. The cropping
calendar developed by Msigwa et al., [3] was adopted to aid the trajectory implementation by extracting
the start and end periods of planting and harvesting for rainfed and irrigated crops.

2.6.2. Use of the Management File in SWAT

The SWAT management file was used to schedule the seasonal land-use trajectories, together with
the corresponding management operations of irrigation and fertilization at the HRU level. Scheduling
was done in calendar days, as opposed to heat units, since the cropping calendar was available.

For the rainfed maize to irrigated mixed crops to irrigated mixed crops (6→ 13→ 13) trajectory,
a simplification of a generic agricultural land cover in SWAT with the plant code “AGRR” was used
to represent the irrigated mixed crops, since the SWAT model only allows one crop at a time in
an HRU [39,45]. Maize was represented by “CORN” plant code in the model. Table 4 shows the
implemented trajectory with the corresponding management schedule in the model. The irrigated
banana, coffee, and maize to irrigated banana and coffee to irrigated banana, coffee, and maize
(16→ 15→ 16) trajectory could not be represented in SWAT, because it had a cropping mixture of
perennial crops (banana and coffee) and an annual crop (maize). Perennial crops keep a constant root
structure during the year and do not need to be replanted every year, while the annual crops follow a
single cropping season, from the plant date to the harvest date, within a year [20].

Both irrigation and fertilization operations were specified in the management file. Irrigation
application in both the dry season and short rainy season was implemented through the auto-irrigation
function in SWAT, using the soil-water-content method. This closely represents the actual field
irrigation, where water is applied according to the water stress in the plant root zone [46]. Fertilization
in SWAT was implemented through auto-fertilization, which applies nutrients when there is a level of
nitrogen stress encountered by the plant. Urea fertilizer (Ammonium Nitrates) was specified, since it is
the most used fertilizer in the Pangani basin [47], where the Usa catchment is located.
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Table 4. Operations schedule for the rainfed maize to irrigated mixed crops to irrigated mixed crops
trajectory in SWAT.

Month Day Operation Crop

1 22 Harvest and kill
3 15 Plant/begin growing season CORN
3 17 Auto fertilization initialization
6 30 Harvest and kill

7 15 Plant/begin growing season AGRR
7 17 Auto fertilization initialization
7 18 Auto irrigation initialization
9 30 Harvest and kill

10 7 Plant/begin growing season AGRR
10 10 Auto fertilization initialization
10 11 Auto irrigation initialization

2.6.3. Use of Management Schedule and Decision Tables in SWAT+

Decision tables are a way of organizing and documenting complex events in a logical way that
is easy to interpret [48]. In SWAT+, decision tables provide a specific way to model intricate sets of
rules and their subsequent actions by allowing the user to add conditions for scheduling management
actions [38]. In SWAT+, it was possible to implement both trajectories, including mixed cropping,
because it is possible to simulate planting and harvesting of more than one crop in an HRU at a time if
the crops are specified in the same plant community.

The planting and harvesting schedules for the rainfed maize to irrigated mixed crops to irrigated
mixed crops trajectory and irrigated banana, coffee, and maize to irrigated banana and coffee to irrigated
banana, coffee, and maize trajectory are presented in Appendix A, Tables A1 and A2, respectively.
The same parameters for auto-fertilization and auto-irrigation as applied in SWAT were applied in
SWAT+, using decision tables in Tables 5–7, for both trajectories to maintain consistency in both models.
The conditional variables used in the decision tables, currently coded in SWAT+, are well defined and
elaborated by Arnold et al., [38].

Table 5. Decision table for irrigation application in SWAT+ for the rainfed maize to irrigated mixed
crops to irrigated mixed crops trajectory.

Name Conds Alts Acts

irr_corn 1 5 2 1
var obj obj_num lim_var lim_op lim_const alt1 alt2

w_stress hru 0 null − 0.8 < <
jday hru 0 null − 195 > −

jday hru 0 null − 272 < −

jday hru 0 null − 279 − >
jday hru 0 null − 365 − <

act_typ obj obj_num name option const const2 fp outcome
irr_demand 2 hru 0 furrow_irr 3 furrow 4 20.0 0.0 unlim 5 y y

Where; name = name of decision table, conds = number of conditions, alts = condition alternatives, acts = number
of actions, var = variables, obj = objects, obj_num = object number, lim_var = limit variable, lim_op = limit operator,
lim_const = limit constant, alt1 and alt2 = alternatives, w_stress = water stress variable, jday = Julian day, hru = HRU
object, option = action option specific to type of action, const and const2 = constants used for amounts, fp = pointer
for option, outcome = action outcomes, 1 name assigned to decision table, 2 name of the action type, 3 name of
action, 4 name of option (furrow irrigation), 5 water from unlimited source.

In Table 5, an irrigation application of 20 mm for the rainfed maize to irrigated mixed crops to
irrigated mixed crops trajectory was triggered when the water stress was less that 0.8 of the soil Field
Capacity (FC) in the dry season (between day 195 and 272) and the short rainy season (between day 279
and 365). For the irrigated banana, coffee, and maize to irrigated banana and coffee to irrigated banana,
coffee, and maize trajectory in Table 6, the same conditions were set, in addition to the irrigation
application in the first planting season (between day 73 and 180). In Table 7, the nitrogen stress
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threshold was set at 0.8, and fertilizer was applied by the model to the HRU, when actual plant growth
fell below the threshold. A maximum amount of 40 kg/ha of Urea fertilizer was specified in any one
application within the growing seasons (i.e., day 73 to 180; day 195 to 272; and day 279 to 365).

Table 6. Decision table for irrigation application in SWAT+ for the irrigated banana, coffee, and maize
to irrigated banana and coffee to irrigated banana, coffee, and maize trajectory.

Name Conds Alts Acts

irr_bana 1 7 3 1
var obj obj_num lim_var lim_op lim_const alt1 alt2 alt3

w_stress hru 0 null − 0.8 < < <
jday hru 0 null − 73 > - −

jday hru 0 null − 180 < > −

jday hru 0 null − 195 − < −

jday hru 0 null − 272 − − −

jday hru 0 null − 279 − − >
jday hru 0 null − 365 − − <

act_typ obj obj_num name option const const2 fp outcome
irr_demand hru 0 furrow_irr furrow 20.0 0.0 unlim y y y

1 name assigned to the decision table, for the other variable meanings, refer to Table 5 above.

Table 7. Decision table for fertilization application in SWAT+ for both trajectories.

Name Conds Alts Acts

fert_mixed 1 7 3 1
var obj obj_num lim_var lim_op lim_const alt1 alt2 alt3
jday hru 0 null − 73 > - −

jday hru 0 null − 180 < - −

jday hru 0 null − 195 − > −

jday hru 0 null − 272 − < −

jday hru 0 null − 279 − − >
jday hru 0 null − 365 − − <

n_stress hru 0 null − 0.8 < < <
act_typ obj obj_num name type const const2 application outcome

fertilize 2 hru 0 Urea_fert 3 urea 4 40.0 0.0 broadcast 5 y y y
1 name of the decision table, 2 name of the action type (fertilize), 3 name of the action, 4 type of option (urea fertilizer),
5 broadcast application mode of fertilizer, for other variable meanings, refer to Table 5.

2.7. SWAT and SWAT+ Model Evaluation

It is worth keeping in mind that the overall aim of these simulations is to show inconsistences in
the default simulations of agricultural land-use dynamics in African catchments. Hence, the focus
was on how representation of temporal dynamics (seasonal trends) of LAI vegetative growth correlate
with the seasonal weather patterns in default model setups. LAI model outputs were compared
with remote-sensing LAI products, to evaluate the performance of the SWAT and SWAT+ models
in simulating land-use trajectories. Alemayehu et al., [15] has expressed the importance of using
remote-sensing LAI products for evaluating SWAT model outputs, especially in cases with limited data
availability. TREX (Tool for Raster data Exploration) (https://github.com/VUB-HYDR/TREX) [49] was
used to process daily PROBA-V satellite images (http://proba-v.vgt.vito.be/en) [50] of the Normalized
Differential Vegetation Index (NDVI) at 1 km resolution into LAI images and monthly time series.
TREX uses the following universal equation by [51], to calculate the LAI:

LAI =

√
NDVI

(1 + NDVI)
(1− NDVI)

(2)

The Spearman correlation coefficient analysis that has been applied in previous studies [52] was
done between the models’ LAI outputs and the LAI from TREX, to measure the extent to which the
variables change together (significance of relationship) in both the default and trajectory models.

https://github.com/VUB-HYDR/TREX
http://proba-v.vgt.vito.be/en
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The Spearman rank correlation is a non-parametric rank that measures the association between two
variable sequences [53]. This monotonic function is as follows:

R = 1−
6
∑

d2

n(n2 − 1)
(3)

where R denotes the Spearman rank correlation coefficient, d is the difference between the sequences,
and n is the number of sequences. The Spearman rank correlation, R, will always be between 1.0
(perfect positive correlation) and −1.0 (perfect negative correlation). Furthermore, the measure of how
likely or probable it is that any observed correlation is due to chance (p-value) was also calculated
based on the R value and sample size. This value ranges between 0 and 1. A p-value close to 1 suggests
that the correlation is most likely due to chance, while a p-value close to 0 suggests that the observed
correlation is unlikely to be due to chance [54].

3. Results and Discussion

3.1. Water-Balance Check

Comparison of the water-balance components was carried out at the HRU level for both the
default SWAT and SWAT+ models, as well as the implemented trajectories in the models, as shown in
Tables 8 and 9, respectively. The precipitation in the SWAT+ model in Table 9 was slightly different
from the precipitation in the SWAT model in Table 8, even though the same parameters were used
during the different model setups. This can be attributed to the way precipitation stations are allocated
in the different models. In SWAT, precipitation stations are allocated based on the sub-basins, while
in SWAT+, this is done based on the landscape units. There was also a difference of 83% in surface
runoff and 67% in deep percolation between the SWAT and SWAT+ default models, highlighting the
uncertainties in the two model structures.

Table 8. Comparison of the water-balance components in SWAT, at the HRU level.

Water Balance Component (mm) Default Model Rainfed Maize Trajectory Model

Precipitation 744.2 744.2
Irrigation - 209.0

Evaporation 492.8 688.8
Lateral flow 5.9 2.5

Surface runoff 183.7 185.4
Percolation 90.0 66.4

Mass balance −28.2 10.1

Table 9. Comparison of the water-balance components in SWAT+ at HRU level.

Water Balance
Components (mm)

Irrigated Banana, Coffee,
and Maize HRUs Rainfed Maize HRUs

Default Model Trajectory Model Default Model Trajectory Model

Precipitation 811.0 811.0 811.0 811.0
Irrigation - 235.2 - 293.5

Evaporation 589.1 690.5 479.0 700.4
Lateral flow 4.8 12.9 4.8 11.8

Surface runoff 20.8 28.9 30.8 21.3
Percolation 201.8 311.2 296.9 372.4

Mass balance −5.5 −2.7 −0.5 −1.4
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Except for precipitation, all water-balance components in Tables 8 and 9 changed after the
implementation of the trajectories. Notably, ET increased significantly in both models, as observed in
Figure 4. In the SWAT model, ET increased by 40% for the rainfed maize to irrigated mixed crops to
irrigated mixed crops trajectory, while in the SWAT+ model, ET increased by 17% and 46% after the
implementation of the irrigated banana, coffee, and maize to irrigated banana and coffee to irrigate
banana, coffee, and maize trajectory and the rainfed maize to irrigated mixed crops to irrigated mixed
crops trajectory, respectively. The increase in ET highlights the impact of including agricultural seasonal
land-use dynamics in the model on the water balance.
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3.2. Leaf Area Index Comparison

It should be noted that the remote-sensing LAI values were obtained at a 1 km resolution,
meaning that they capture different vegetation and cannot be treated as a pure signal of a single crop.
However, they provide an insight on the temporal crop-growth relationship to dry and wet seasonal
patterns, and catchment management practices, which provides a way for identifying model simulation
inaccuracies in crop phenology.

3.2.1. Rainfed Maize to Irrigated Mixed Crops to Irrigated Mixed Crops Trajectory

In Figure 5, both the default SWAT and SWAT+ model LAI values for rainfed maize land use depict
only one growing season (March to July) throughout the year. This contradicts the remote-sensing LAI
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values that depict two major growing seasons corresponding with the two rainy seasons of March
to May and November to December. Furthermore, the remote-sensing LAI values do not drop to
zero throughout the year, while in SWAT and SWAT+ models, the values drop to zero after the first
growing season. In SWAT and SWAT+ models, the crop LAI drops to zero because of the ‘harvest and
kill’ operation, but in reality, there is more vegetation, such as shrubs or trees, surrounding the fields,
which may remain green after harvesting the crops. For that reason, a remote-sensing LAI signal will
not go to zero, as compared to the LAI from the crop HRU simulated in SWAT and SWAT+ models
between the growing seasons.
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During the first growing season, the default SWAT and SWAT+ models LAI values were higher
than the remote-sensing LAI by TREX in Figure 5, since the default models simulate LAI of one single
crop, while remote-sensing products average all vegetation, and possibly bare land, in a pixel, due to a
coarse resolution. In addition, auto-fertilization is applied during the default simulation, and the model
applies enough fertilizer to meet harvest removal, as well as an additional amount to compensate for
any nitrogen losses to surface runoff or leaching [39]. However, this does not reflect real fertilization
practices. Van Griensven et al., [55] also highlighted an overestimation of LAI by a SWAT model in
comparison with remote-sensing data.

Both trajectory implementations in SWAT and SWAT+ models capture the two major growing
seasons within the two rainy seasons, as the LAI increases between the seasons, following the TREX
LAI pattern in Figure 5. The correlation between the trajectory LAI and TREX LAI slightly increased in
Figure 6b,d for both model implementations, signifying an improved relationship. The slight increase
in correlation can be attributed to the implementation of the seasonal land-use trajectories in the model,
giving LAI patterns that captures the two growing seasons corresponding to the TREX LAI vegetative
growth patterns. However, the LAI of the trajectory simulations dropped to zero in February and
September, which are dry months in the catchment [7], unlike the TREX LAI that does not drop to zero.
This reflects the inclusion of other vegetation within the TREX LAI pixel that are averaged together
rather than representing a single crop as simulated by the SWAT and SWAT+ models. This shows
the complexity and scaling issues when using remote-sensing products in model evaluation at the
HRU level.



Water 2020, 12, 1541 13 of 18

Water 2020, 12, x FOR PEER REVIEW 13 of 19 

Water 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/water 

 
Figure 5. LAI comparison of the rainfed-maize land use for default and trajectory implementation. 

 
Figure 6. Correlation analysis between TREX LAI and SWAT and SWAT+ default models and rainfed 
maize to irrigated mixed crops to irrigated mixed crops trajectory outputs. 

During the first growing season, the default SWAT and SWAT+ models LAI values were higher 
than the remote-sensing LAI by TREX in Figure 5, since the default models simulate LAI of one single 
crop, while remote-sensing products average all vegetation, and possibly bare land, in a pixel, due to 
a coarse resolution. In addition, auto-fertilization is applied during the default simulation, and the 
model applies enough fertilizer to meet harvest removal, as well as an additional amount to 
compensate for any nitrogen losses to surface runoff or leaching [39]. However, this does not reflect 

Figure 6. Correlation analysis between TREX LAI and SWAT and SWAT+ default models and rainfed
maize to irrigated mixed crops to irrigated mixed crops trajectory outputs.

3.2.2. Irrigated Banana, Coffee, and Maize to Irrigated Banana and Coffee to Irrigated Banana, Coffee,
and Maize Trajectory

The default SWAT+ LAI was at a maximum constant for seven months, every year, throughout
the simulated growing period (Figure 7), which does not reflect real crop practices in Usa catchment.
The constant LAI can be attributed to using a perennial land cover (banana) in SWAT+ to represent the
irrigated banana, coffee, and maize land use during the default model set up. The LAI of the default
SWAT+ model falls to zero in November until January, following dormancy, whereby the default
growing season in the model goes from January until October, which is not realistic for agricultural
crops in Usa catchment.

From Figure 8a, there is no existing relationship between the default SWAT+ model LAI output
and the remote-sensing reference LAI. However, there is a strong correlation between the trajectory
model LAI and the remote-sensing LAI (Figure 8b). This result is consistent with the irrigated banana,
coffee, and maize to irrigated banana and coffee to irrigated banana, coffee, and maize trajectory
capturing the major growing seasons corresponding with the rainy seasons. It is also good to note that
the trajectory LAI does not fall to zero, which is representative of perennial crops.
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4. Conclusions

In this study, we present an innovative approach of representing the seasonal land-use dynamics of
the Usa catchment in the Kikuletwa basin in SWAT and SWAT+ models, based on land-use trajectories.
The impact of these representations was assessed by comparing the SWAT and SWAT+ model outputs
with remote-sensing LAI products. The results indicated an improved vegetation simulation by the
models in cultivated catchments following clear dry and wet seasons. The LAI dynamics of the
trajectory implementations showed more realistic temporal advancement patterns that corresponded
to the seasonal rainfall within the catchment and in agreement with the remote sensing products,
as compared to the default model setups.

The principal change to the default models that use land-use and land-cover (LULC) maps
was the manual implementation of the seasonal land-use dynamics, which was done by linking the
land-use trajectories to the LULC maps. The dominant dynamic trajectories were implemented in
SWAT and SWAT+, using a management file and decision tables, respectively. The decision tables in
SWAT+ provided more flexibility, as mixed cropping in the same HRU at the same time was possible,
unlike in SWAT.

Although the representation of the seasonal land-use dynamics through land-use trajectories can
be challenging, involving numerous manual edits as compared to a static representation through land
cover classes, representing land-use dynamics improves the model representation of LAI. Especially
for regions that are intensively cultivated with several cropping seasons, the model is able to reflect
the seasonal patterns of vegetative growth simulations in correspondence to the seasonal weather.
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This is the first study dealing with dynamic land-use representation by using land-use trajectories
for cultivated tropical catchments in hydrological models. Hence, this is a critical step toward more
realistic hydrological modeling applications of SWAT and SWAT+ default models in African cultivated
catchments with multiple growing seasons within a year.
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Appendix A

Table A1. Planting and harvesting schedule for the rainfed maize to irrigated mixed crops to irrigated
mixed crops trajectory in SWAT+ decision table.

Month Day Operation Crop

1 20 Harvest and kill CORN 1

3 15 Plant CORN
6 29 Harvest and kill CORN
7 14 Plant TOMA 2

7 14 Plant EGGP 3

9 29 Harvest and kill TOMA
9 29 Harvest and kill EGGP

10 6 Plant CORN
10 6 Plant TOMA
10 6 Plant EGGP
12 16 Harvest and kill TOMA
12 16 Harvest and kill EGGP

1 Plant code for maize; 2 plant code for tomatoes; 3 plant code for eggplants.

Table A2. Planting and harvesting schedule for the irrigated banana, coffee, and maize to irrigated
banana and coffee to irrigated banana, coffee, and maize trajectory in SWAT+ decision table.

Month Day Operation Crop

1 22 Harvest and kill CORN
3 15 Plant/begin growing season CORN
6 30 Harvest and kill CORN
7 7 Harvest BANA 1

9 25 Harvest BANA
9 30 Harvest COFF 2

10 7 Plant/begin growing season CORN
12 31 Harvest BANA

1 Plant code for bananas; 2 plant code for coffee.
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49. Suliga, J.; Bhattacharjee, J.; Chormański, J.; van Griensven, A.; Verbeiren, B. Automatic proba-V processor:

TREX—Tool for Raster Data Exploration. Remote Sens. 2019, 11, 2538. [CrossRef]
50. Wolters, E.; Dierckx, W.; Dries, J.; Swinnen, E. PROBA-V Products User Manual. 2014. Available online:

http://proba-v.vgt.vito.be/sites/proba-v.vgt.vito.be/files/products_user_manual.pdf (accessed on 20 March 2019).
51. Su, Z. Remote Sensing Applied to Hydrology: The Sauer River Basin Study. Ph.D. Thesis, Faculty of Civil

Engineering, Ruhr University Bochum, Bochum, Germany, 1996.
52. Coutu, G.; Vega Orozco, C. Impacts of landuse changes on runoff generation in the east branch of the

Brandywine creek watershed using a GIS-based hydrologic model. Middle States Geogr. 2007, 40, 142–149.
53. Liu, D.; Cho, S.-Y.; Sun, D.-M.; Qiu, Z.-D. A Spearman correlation coefficient ranking for matching-score

fusion on speaker recognition. In Proceedings of the TENCON 2010–2010 IEEE Region 10 Conference,
Fukuoka, Japan, 21–24 November 2010; pp. 736–741. [CrossRef]

54. Akoglu, H. User’s guide to correlation coefficients. Turk J. Emerg. Med. 2018, 18, 91–93. [CrossRef]
55. Van Griensven, A.; Maskey, S.; Stefanova, A. The use of satellite images for evaluating a SWAT model:

Application on the Vit Basin, Bulgaria. In Proceedings of the 6th International Congress on Environmental
Modeling and Software, Leipzig, Germany, 1–5 July 2012.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2139/ssrn.2197893
http://dx.doi.org/10.3390/rs11212538
http://proba-v.vgt.vito.be/sites/proba-v.vgt.vito.be/files/products_user_manual.pdf
http://dx.doi.org/10.1109/TENCON.2010.5686608
http://dx.doi.org/10.1016/j.tjem.2018.08.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

