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Introduction

1 Urban areas are typically a conglomerate of different land-cover types, housing a wide

range of activities (residential, commercial, industrial, etc.) and forming a patchwork of

buildings, streets, parking lots, pavements, gardens, squares, parks, etc. Complexity and

heterogeneity are inherent to the urban landscape.

2 Due  to  these  specific  characteristics  it  is  not  surprising  that  the  urban  landscape,

compared  to  rural  landscapes,  behaves  differently  with  regard  to  water  and  energy

fluxes, and has a distinct hydrological response. Typically most of the precipitation runs

off  rapidly  at  the  surface  due  to  the  high  cover  of  sealed  surfaces  in  urban  areas

(Dougherty  et  al.,  2004).  Before  the  precipitation  reaches  the  surface  it  is  however
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partially intercepted and evaporated. Interception is the portion of the precipitation that

is  stored  or  collected  by  the  surface  (mainly  vegetal  cover)  and  that  subsequently

evaporates. In studies of major storm events, the interception loss is generally neglected.

However, it can be a considerable influencing factor for small or medium storms and

water  balance  computations  would  be  significantly  in  error  if  evaporative  losses  of

intercepted precipitation were not included. 

3 Although urban interception remains relatively little studied, there is a growing interest

in obtaining urban interception rates (Grimmond and Oke, 1991; Xiao et al., 2000; Ragab et

al., 2003; Gash et al., 2007; Asadian and Weiler, 2009). In an urban context interception is

mainly  caused  by  urban  elements  and  vegetation.  Urban  elements  such  as  roofs,

pavements or other impervious surfaces account for some interception in the form of

temporal  storage  of  water  from  where  it  will  evaporate  shortly  after.  This  type  of

interception is  mostly  regarded as  depression storage.  Also  urban vegetation and in

particular trees, contribute substantially to urban interception (Grimmond and Oke, 1999;

Guevara-Escobar et al., 2007). Interception by vegetation is a complex process, which is

affected by the storm characteristics,  the species of vegetation, percentage of canopy

cover, growth stage, season and wind speed, etc. 

4 Interception  loss  is  higher  during  the  initial  phase  of  a  storm and approaches  zero

thereafter  (Gerrits,  2010).  Vegetation  obviously  plays  an  important  role  in  the

interception. Asadian and Weiler (2009) state that urban trees are important for reducing

storm runoff as a result of higher interception losses. Even twice as much as in natural

forest due to urban heat island effects and the isolated position of urban trees, which

enables  trees  to  obtain  larger  structural  dimensions.  Vegetation  characteristics  and

dynamics determine the spatial and temporal variation of interception rates. Land-use/

land-cover changes,  e.g.  vegetated areas that are turned into urban land-cover types,

alter evapotranspiration and interception rates and patterns (Rim, 2009).

5 Since the early days of Earth Observation (EO), monitoring of vegetation has been a key

goal. The use of satellite and airborne imagery offers a relatively easy and cost-effective

way to monitor and manage vegetated areas. The concept of EO based vegetation indices

has become popular due to its area-covering nature and its simplicity to be used in a local

as well as regional context at different resolutions (Zheng and Moskal, 2009). 

6 Initially EO based approaches for assessing vegetation dynamics were mostly developed

for rural/agricultural areas. Andersen et al. (2002) and Stisen et al. (2008) give examples of

how EO can be used to parameterise vegetation and to assess dynamics for hydrological

modelling under data sparse non-urban conditions. Andersen et al. (2002) derived Leaf

Area Index (LAI) from coarse resolution imagery for vegetation parameterisation (root

depth,  fractional  cover,  etc.).  Stisen  et  al. (2008)  integrated  EO-derived  LAI  (to

parameterise root depth, crop coefficient) and potential evapotranspiration (PET) into a

distributed hydrological model for a large scale basin. Although discharge and actual ET

rates  were  relatively  similar  for  the  original  and  EO based  approach,  both  methods

yielded considerable spatial differences. Main disadvantage of the conventional (non-EO)

approach  was  the  fact  that  the  limited  number  of  precipitation  stations  strongly

determined the spatial patterns of the model output. Vegas Galdos (2012) presented an

approach to obtain spatially distributed estimates for interception storage capacity based

on MODIS imagery, which were used as input for an interception model.

7 With respect to urban areas applications on vegetation parameterisation using EO data

are more limited. A first topic of interest is vegetation (fraction) mapping. Ridd (1995)
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explored the applicability of a vegetation-impervious surface-soil model to describe the

urban ecosystem of several cities. A second topic of interest is urban heat island studies

(Weng et  al.,  2004) and the cooling effect of  urban vegetation (Loughner et  al.,  2012).

Guevara-Escobar et al. (2007) focused on the interception of urban trees. Monitoring a

single tree in an urban environment during nineteen storm events showed considerable

canopy interception rates (60%) and an influence on the local precipitation distribution.

Finally, some studies also aimed at estimating evapotranspiration in an urban context

(Boegh et al., 2009; Nouri et al., 2012). 

8 As a conclusion one can state that EO has potential and an added value for vegetation

monitoring but that its application in urban areas remains relatively under-exploited. In

general  vegetated  surfaces  play  an  important  role  as  areas  of  recharge,  for  the

redistribution of  precipitation and in  the  regulation of  surface  runoff,  especially  for

medium  storms  (Zhang  et  al.,  2011).  Therefore  detailed  and  spatially  distributed

vegetation  parameterisation  is  of  great  interest  for  hydrological  modelling  in  urban

catchments. 

9 This paper addresses the following research questions:

1. To what extent do vegetation dynamics play a role in the hydrological response of an urban

river catchment?

2. How can EO contribute to a better hydrological parameterisation of vegetation dynamics at

catchment scale?

10 The main objective of our research is to develop an EO based method to assess and to

parameterise vegetation dynamics at catchment scale and to integrate these EO based

estimates  into  a  distributed  hydrological  model.  This  study  focuses  on  EO  based

estimation of interception storage capacity.

11 The paper is organised as follows: in section 2 the main characteristics of the study area,

an urban river catchment, as well as the main EO sources are described. Next, section 3

describes  the  EO  based  methodology  to  retrieve  distributed  parameter  maps,  more

specifically interception storage capacity. In section 4 a description of the hydrological

model  for  the  study  area  is  provided.  Section  5  discusses  the  results  of  the  EO

parameterisation and the impact on the hydrological simulation. Finally, the conclusions

summarise the main outcomes from a methodological,  as well  as hydrological impact

perspective. 

 

Study area and data

12 The Woluwe River catchment in Brussels (Belgium) is an urban catchment with limited

urban dynamics over the last  decade,  but is  characterised by dense vegetation cover

(urban green and forest). This makes the Woluwe River catchment interesting for remote

sensing based parameterisation regarding vegetation dynamics and to study the impacts

on simulated hydrological output.

13 The topography within the Upper Woluwe study area (31.2 km²) ranges from 49.9 to 128.5

m, with an average of 94.4 m above the sea level. The upper Woluwe has a pronounced

topography and is dominated by loamy soil textures. The most important land-cover type

in the study area is  composed of  broadleaf trees (urban green and forest)  occupying

around 20 km² or 65% of the catchment area. The other relevant land-cover class is urban

built-up area, covering 9.2 km² (29%) of the catchment area and is located in the north-
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west. 46% of these urban pixels have extensive vegetation cover. The remaining land-

cover classes have a negligible coverage (<5%). Figure 1 shows a land-cover map for the

upper Woluwe catchment.

 
Figure 1. WetSpa land-cover map for the Upper Woluwe River catchment.

 

Adapted from: land-use map of Flanders and Brussels, AGIV

14 For  the  Upper  Woluwe  catchment  a  set  of  medium  resolution  satellite  images  was

acquired to explore the use of remote sensing derived information, related to vegetation

dynamics, for hydrological modelling. Table 1 summarises the used satellite images. The

CHRIS/Proba image was used to obtain sealed surface proportion estimates (Demarchi et

al.,  2012).  The  ASTER  images  (09/10/2010  and  02/03/2011)  were  used  to  assess

seasonality,  i.e.  to  derive  vegetation  indices  for  maximum  (summer/autumn)  and

minimum (winter/spring) conditions respectively.

 
Table 1. Properties of medium resolution imagery used in this study.

 

Interception storage estimation using Earth
observation data

15 This study aims to integrate EO derived interception storage capacity estimates (Isc) of

urban  green  into  a  distributed  physically-based  hydrological  model  (WetSpa).  Below

follows a step-by-step description of the methodology. Figure 2 summarises the EO based

urban vegetation parameterisation approach. 
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Figure 2. Earth observation based approach for parameterisation of vegetation dynamics related
processes.

16 The normalised difference vegetation index NDVI (Step 1) and leaf area index LAI (Step 2)

are  derived  from  medium  resolution  imagery.  Both  indices  have  a  clear  and  easily

interpretable physical meaning. The LAI maps are validated by field data (collected under

seasonal  maximum  conditions)  and  are  subsequently  used  in  an  existing  empirical

equation (Gomez et al., 2001 - Eq. 5) to obtain distributed Isc estimates for minimum and

maximum conditions (Step 3). Isc is regarded as an important parameter for hydrological

models  (Vegas  Galdos  et  al.,  2012).  Liu  (1998)  obtained  a  medium sensitivity  for  the

maximum  interception  storage  capacity  parameter  in  the  WetSpa  model.  Both  the

seasonal  minimum  and  maximum  interception  storage  capacity  maps  form  a  direct

distributed parameter input map for hydrological simulations with the WetSpa model

(Step 4). Seasonal variation is simulated at cell level using a sine function. 

17 The original version of the WetSpa model uses a land-cover class based approach with a

look-up table containing literature based seasonal minimum and maximum interception

storage  capacity  values  for  each  land-cover  class  (Table  2)  and  applies  a  seasonal

variation sine-function at class level. This results in interception storage capacity maps

with a poor spatial distribution and generic interception estimates. An EO based approach

offers the possibility to overcome these limitations by generating spatially distributed

and site- and period-specific interception storage estimates.
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Table 2. Default literature based interception storage capacity characterising land-cover classes in
WetSpa.

18 For  a  quantitative  assessment  of  the  spatial  and  temporal  distribution  of  rainfall

interception loss at catchment level, use will be made of an EO-based vegetation index

approach,  inspired  by  the  methodology  proposed  by  De  Jong  and Jetten  (2007).  The

method of De Jong and Jetten (2007) uses the equation proposed by Aston (1979 - Eq. 1) to

calculate: 

19 where I is the rainfall interception [mm]; Cp is the fractional vegetation cover [-]; Isc is the

maximum interception storage capacity of the canopy at a specific moment [mm]; k is a

canopy openness correction factor; and P is the rainfall [mm].

20 Steps 1 to 3 in our approach (Figure 2) are very similar to those in the methodology

proposed by De Jong and Jetten (2007). However, an additional LAI equation (Eq. 4) is used

and the obtained LAI values are validated with field data. 

 

Step 1: Determination of Normalised Difference Vegetation Index

(NDVI)

21 Starting point  of  the methodology are calibrated and geometrically rectified spectral

reflectance  data.  In  this  study  two  medium  resolution  images  (ASTER)  are  used,

corresponding to the minimum (02/03/2011) and maximum conditions (09/10/2010) of

the annual vegetation growth cycle. 

22 The first step is to calculate the NDVI, which is a generally accepted and widely used

vegetation  index  (Tucker,  1979).  It  is  a  measure  for  the  presence  of  living  green
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vegetation within an image pixel. The NDVI is calculated using the red and near infrared

reflectance bands of an image (Eq. 2). In case of an ASTER image band 2 (RED) and band 3 (

NIR) are used. 

23 NDVI values range from -1 to 1. A value of 1 indicates full vegetation cover, while a value

close to 0 indicates bare soil conditions. Negative values mainly indicate clouds, snow or

water. 

 

Step 2: Determination of Leaf Area Index (LAI)

24 The LAI is also a commonly used vegetation index, but contrary to the NDVI it is not as

straightforward in its use as there is no universal way for the calculation of the LAI. In

this study LAI is related to the NDVI. NDVI shows an asymptotical behaviour in relation to

LAI (Carlson and Ripley, 1997), resulting in poor estimates for high LAI values. 

25 In this  study two different equations for the calculation of  LAI  are used.  Firstly,  the

equation  of  Tabarant  (2000)  (Eq.  3)  used  by  De  Jong  and  Jetten  (2007),  which  is  an

empirical  linear  relation  for  oak  forest  in  southern  France  that  is  assumed  to  be

representative for broadleaf trees:

26 Secondly, the equation of Su (1996) (Eq. 4) is used, which has the advantage of yielding

positive LAI values only. However, it has the tendency to underestimate LAI for dense

vegetation:

27 Using different equations will of course yield different LAI maps. The main objective of

the LAI mapping was to get an idea of the LAI ranges for broadleaf trees dominating the

study  area.  LAI  results  (for  maximum  conditions)  were  validated  using  field  LAI

measurements, which can be measured using either direct or indirect methods (Gower et

al., 1999; Kussner and Mosandl, 2000). In this study, (hemispherical) photos of tree plots

were processed using the gap fraction theory (Norman and Campbell, 1989; Pearcy, 1989)

to obtain a LAI value for each tree plot.

28 On 14 October 2010 a hemispherical camera (Digital HR reflex camera Canon 5D with a

Sigma 8 mm f/4 circular Fisheye lens, equi-angular projection) was used to obtain field

data (Jonckheere et al., 2004) for maximum conditions. Ten broadleaf tree plots (owned

and  monitored  by  the  Environmental  Service  BIM/IGBE  of  Brussels  and  UCL)  were

selected for gathering field LAI data (Remark: three plots are located just outside the

model area and are not plotted on Figure 4). The number of trees per plot was varying

from one plot to another. A 16-point grid covers a plot of 30 by 30 m. At every point a

hemispherical photo was taken.

29 The  hemispherical  photos  (blue  band)  were  processed  using  the  Hemisphere  1.5.2

software. The gap fraction theory uses the amount of light that comes through the gaps in

the foliage to estimate LAI. Both the method of Lang and Xiang (1986) and the method of

Norman and Campbell (1989) were used to compute the LAI values. For each plot the

obtained LAI values (2 x 16) were averaged.
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Step 3: Determination of Storage Interception Capacity (I
sc

)

Tree canopy interception

30 Next, the LAI maps are used to calculate the interception storage capacity (Isc) of mainly

tree canopies in the urban catchment. The Isc value refers to the amount of water that can

be stored in  the canopy and litter.  As  can be  expected this  storage depends  on the

vegetation type.

31 De Jong and Jetten (2007) analyzed a large number of publications on the estimation of

interception storage capacity, resulting in a number of Isc equations to be used for specific

vegetation types. 

32 For broadleaf trees De Jong and Jetten (2007) use the following equation (Eq. 5) from

Gomez et al. (2001): 

33 Recently,  also  Vegas  Galdos  et  al. (2012)  made  an  attempt  to  develop  a  universally

applicable equation for different vegetation types linking Isc to LAI, using a vegetation-

dependent factor. Despite these efforts to establish generally applicable equations, it is

advisable to check the applicability for local conditions (site, species) using field data. For

30 locations on the VUB university campus in Brussels interception storage for broadleaf

canopy was  estimated by throughfall  water  collection during a  4-hour rainfall  event

under full-leaf (maximum) conditions (Khanh, 2014). Unfortunately this validation set

just  falls  outside the study basin.  The measured interception storage estimates could

however be compared with corresponding estimates obtained by applying Eq. 5 using the

measured LAI. A reasonable linear fit was obtained (R² = 0.60). Due to the lack of a better

alternative the above mentioned equation 5 (Gomez et al., 2001) was used.

 
Urban interception

34 Next to (broadleaf)  tree coverage also urban land cover is abundantly present in the

Upper Woluwe River catchment. Due to the strong heterogeneity in the urban zone image

pixels  often  constitute  of  a  mixture  of  impervious  surface  cover  and  urban  green.

Following the standard assumption that urban pixels are fully impervious would cause a

considerable underestimation of interception, as such an approach would not account for

the  urban  green  present  in  those  pixels.  Therefore  sealed  surface  proportion  maps

(Demarchi et al.,  2012) were used to obtain a better estimation of urban interception,

assuming  that  Isc in  every  urban  pixel  is  the  combination  of  interception  on  an

impervious  fraction  (low  interception)  and  on  a  vegetated  fraction,  i.e.  grass  (high

interception). This is mainly important for estimations under maximum conditions (Eq. 6)

where a large difference occurs between Isc for urban (0.5 mm) and grass (2.0 mm), while

there is no difference under minimum conditions (Eq. 7) (see Table 2).

35 where S is the sealed surface proportion (%) in a pixel.
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Step 4: Integration of I
sc

 into hydrological simulations

36 The hydrological model WetSpa uses the yearly minimum and maximum interception

storage capacity (Isc) as a direct input, where seasonal variation is simulated assuming a

sine-shaped function. 

37 The impact of using an EO based estimate following the approach described above instead

of a literature based estimate was assessed by evaluating the water balance for different

simulations.

 

Distributed hydrological modelling

38 Hydrological  models  are  indispensable  tools  to  describe,  understand  and  simulate

hydrological conditions and processes in (urban) river catchments. Both lumped or (semi-

) distributed approaches are used to simulate hydrological processes in river catchments.

Jacobson (2011)  notes that  in complex urban environments,  spatially detailed data is

important for proper model calibration. Therefore a thorough characterisation of urban

land cover and estimation of related hydrological parameters for hydrological modelling

is of utmost importance.

39 In this research the focus lies on the spatiotemporal simulation of urban interception.

Therefore  the  preference  is  given  to  fully-distributed  hydrological  modelling,  which

allows spatial and temporal analysis of various water balance components. A drawback is

the demanding needs for spatially distributed input data, which are often difficult and/or

expensive  to  collect.  Earth  observation  is  put  forward  as  an  important  source  for

providing detailed spatiotemporal information on the characteristics of the Earth surface,

useful for hydrological parameterisation and modelling.

40 The physically-based, distributed rainfall-runoff model WetSpa (Liu and De Smedt, 2004)

is used in this study. Based on a number of base maps (land cover, digital elevation model

and soil texture) the necessary physically-based parameter maps for WetSpa are derived

to simulate the hydrological response of the Upper Woluwe River catchment. 

41 In WetSpa, the rainfall is reduced until the interception storage capacity is filled. If the

total rainfall  during the first time increment is greater than the interception storage

capacity, the rainfall is reduced by the capacity. Otherwise, all rainfall is intercepted in

the canopy or the urban element, and the remainder of interception is removed from the

rainfall in the following time increments. 

42 By integrating the spatially distributed EO based interception storage capacity maps into

the WetSpa model, hydrological simulation of interception storage for the dominating

urban tree and urban class can be done on a pixel by pixel basis, instead of on a class by

class basis like in the original WetSpa approach. 

43 A set of meteorological time series (precipitation P, potential evapotranspiration PET)

forms the input to the model. The hourly simulation results are evaluated based on a

comparison  with  an  observed  discharge  time  series.  For  the  Upper  Woluwe  River

catchment  an  hourly  discharge  time  series  (2010-2011)  for  the  Goubert  station  (

www.flowbru.be) is available. 

44 Calibration of the model on the Upper Woluwe catchment was carried out for an 8 month

period (Jul. 2010 - Feb. 2011). Validation also covered an 8 month period (May 2011 - Dec.
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2011). Calibration was initiated by an extensive manual trial-and-error calibration, which

increases  understanding  on  model  behaviour  as  a  result  of  parameter  changes.  The

manual  calibration  enabled  us  to  obtain  a  realistic  value  for  the  initial  groundwater

storage, while ensuring a satisfactory volumetric efficiency. The manual calibration was

followed by automated parameter estimation (PEST) for the rest of the global WetSpa

parameters.

45 Though the Nash-Sutcliffe efficiencies are on the low side (0.47 for calibration and 0.40

for validation,  with higher NSE values for high flows,  0.64 and 0.51 respectively)  the

model performs well regarding the water balance simulation, with a volumetric efficiency

between 0.75 and 0.80. The volumetric efficiency ranges from 0 to 1 and represents the

fraction of water delivered at the proper time. Also the near-to-zero value for model bias

(0.09 for calibration and -0.03 for the validation period) gives an indication of a satisfying

goodness-of-fit.  The  relatively  poor  model  performance  for  some  criteria  can  most

probably be attributed to some limitations of the WetSpa model, which does not consider

the presence and explicit influence of the sewer system. 

46 A  more  extensive  description  of  the  WetSpa  model  for  the  Upper  Woluwe  River  is

provided in Verbeiren et al. (2013).

47 Using  the  calibrated  WetSpa  model  for  the  Upper  Woluwe  catchment,  in  this  study

simulations with an hourly resolution were run for the period 1 January 2010 till  31

December 2011. A first scenario used the literature based look-up table of interception

storage capacity for different land-cover classes (reference), while a second scenario used

the EO based Isc maps. In order to assess the sensitivity of the model output to the Isc map

input  the  literature  values  were  arbitrarily  increased/decreased  with  25% and  these

sensitivity Isc maps were subsequently used in WetSpa simulations (sens+ and sens-). 

 

Results and discussion

NDVI mapping

48 As explained above, in this study two ASTER images (level2B) for the Upper Woluwe River

catchment  were  used,  one  from  9  October  2010  and  one  from  2  March  2011,

corresponding  respectively  with  maximum  and  minimum  conditions  in  the  annual

vegetation growth cycle. 

49 The obtained NDVI maps (15 m resolution) for minimum and maximum conditions were

resampled  (bilinear  method)  to  30  m corresponding  to  the  spatial  resolution  of  the

WetSpa model. 

50 Figure 3 shows the histogram of NDVI values for both minimum (winter/spring) and

maximum (summer/autumn) conditions. NDVI values range from 0.15 to 0.8. As expected,

the average NDVI value for maximum conditions (0.62) is considerably higher than the

average NDVI value for minimum conditions (0.39). 
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Figure 3. Histogram of NDVI values for minimum (a – 2nd of March) and maximum (b – 9th of
October) conditions.

 

Leaf area index mapping and validation

51 Applying the EO based equations of Tabarant (2000) and Su (1996) four LAI maps were

obtained: two under minimum (March 2011) and two under maximum (October 2010)

vegetation conditions. Based on field data the maximum LAI maps were validated (see

below). Finally a combined LAI map was generated. Figure 4 shows this map for the Upper

Woluwe River catchment under maximum vegetation conditions.

52 LAI values roughly range from 0.25 to 3. Close-to-zero values are obtained for the urban

pixels  with  low  vegetation  cover  in  the  north-western  part  of  the  catchment.  The

abundant broadleaf tree class (urban green and forest) clearly yields high LAI values,

mainly between 2 and 3, corresponding to the field measured LAI estimates (black dots).
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Figure 4. LAI map under maximum vegetation conditions. 

Black dots indicate monitored broadleaf tree plots, the values indicate field measured

LAI estimates. 

53 Figure  5  clearly  indicates  that  the  LAI  equations  of  Tabarant  (2000)  and  Su  (1996)

respectively  over-  and  underestimate  LAI  values  measured  in  the  field  (maximum

conditions).  Overall  Su  (1996)  yields  slightly  better  results  (RMSE:  0.42).  However,

averaging both LAI  maps yields a RMSE of  0.26.  Therefore it  was decided to use the

averaged LAI maps for further processing. 

 
Figure 5. Field and EO based LAI estimates [-] for ten broadleaf tree plots in the Upper Woluwe River
catchment. 

Field data was collected on 14.10.2010; the image dates from 09.10.2010.

 

Distributed interception storage capacity maps

54 EO based interception storage capacity estimates for both tree canopy and urban pixels

were combined into one map under minimum and maximum vegetation conditions. For

the other classes, with a limited coverage in the study area, the literature based values
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from the WetSpa look-up table (Table 2) were used. Figure 6 shows the minimum and

maximum interception storage capacity maps for the Upper Woluwe River catchment.

The majority (90%) of interception storage capacity values (Isc) range from 0.5 to 1.8 mm

(mean: 1.2 mm) and from 1.2 to 2.6 mm (mean: 2.0 mm) under minimum and maximum

conditions respectively. These values correspond very well to the ranges (0.6 - 2.6 mm)

presented by Breuer et al. (2003) for Isc of Fagus sylvatica (beech), the dominating species in

the upper  Woluwe area.  Aussenac  and Boulangeat  (1980)  report  interception storage

capacity values ranging between 1.7 and 1.9 mm for similar beech tree stands (Fagus

sylvatica). More recently André et al. (2008) performed local field experiments for a beech

tree stand (Fagus sylvatica) in Belgium yielding somewhat lower Isc values (0.53 - 1.17 mm).

 
Figure 6. Earth observation based interception storage capacity maps under minimum and
maximum vegetation conditions. 

55 Under minimum conditions one can note that Isc values are not only considerably lower

for the broadleaf tree class, but also for the urban zone. The latter is a direct result of the

very low interception capacity of urban vegetation during winter/spring.

56 Figure 7 shows the statistics (average, minimum and maximum) of Isc values per land-

cover  class  in  the  Upper  Woluwe River  catchment,  both  under  minimum as  well  as

maximum conditions. One can note the permanently high values for forested and urban

green areas, varying between 1.5 and 2.5 mm. Nevertheless the ranges under minimum

and maximum conditions indicate a relatively high within-class variation for broadleaf

tree pixels. In between the different tree types (3) very little differences are seen. All tree

types show similar ranges, indicating a similar variation in foliage coverage. Nevertheless

evergreen  tree  types  show  a  somewhat  lower  difference  between  minimum  and

maximum conditions compared to deciduous trees, but the contrast is less than expected.

The variation within the urban and built-up class (under maximum conditions) can be

entirely explained by the variation in urban vegetation cover (fraction of vegetation in

mixed urban pixels).
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Figure 7. Earth observation based interception storage capacity estimates per land-cover class in
the Upper Woluwe River catchment, under minimum and maximum vegetation conditions. 

57 The literature based approach considerably underestimates interception storage capacity

for broadleaf trees under minimum vegetation conditions (winter/spring) in comparison

to EO-based estimates. Under maximum conditions there is a slight overestimation of Isc

for the literature based approach compared to the EO based estimation of Isc for trees. For

urban areas the values are clearly lower, suggesting an underestimation and confirming

the importance of taking into account the pervious/vegetated fraction of urban pixels.

58 It is also worth mentioning that the EO based method, which aims at being generally

applicable,  enables  to  obtain  site-  and  time-specific  Isc estimates  for  entire  river

catchments. 

 

Hydrological simulation: look-up versus Earth observation approach

59 Figure 8 shows the simulated cumulative interception for the Upper Woluwe catchment

for 2010-2011. Using the EO estimates for Isc yields a higher total interception (+10.1%)

compared to the literature based look-up table approach. The EO based cumulative curve

yields  a  very  similar  result  to  the  sens+  simulation,  indicating  that  the  EO based Isc

estimates are in the order of 25% higher than the original literature based Isc. One can also

note that the difference between the EO and look-up table based approach is not constant

throughout the year. During autumn and winter the EO based curve tends to divert from

the reference curve, indicating that EO estimates for Isc are considerably higher. While in

spring and summer the EO curve gets closer to the reference cumulative curve, indicating

a smaller difference in Isc values. This seasonal variation is a result of a seemingly slight

overestimation of Isc values by the look-up based approach when trees have dense foliage

and an underestimation in case of sparse tree canopy foliage.
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Figure 8. Simulated cumulative interception (2010-2011) in the Upper Woluwe River catchment: a
comparison of the original literature based and the Earth observation based approach. Also the +/-
25% sensitivity ranges are indicated. 

60 In  the  Upper  Woluwe catchment  interception amounts  to  21.5% of  the  precipitation

(2010-2011) according to the reference run using literature values from the WetSpa look-

up  table.  The  increase  of  10.1%  for  the  EO  based  WetSpa interception  simulation

corresponds to an increase of 2.2% of interception in the water balance. This increase

goes mainly at the expense of infiltration. The other components of the water balance

seem to be little  affected.  It  is  important  to  note though that  these results  and the

conclusions  drawn from it  are  for  this  specific  study area and for  the overall  water

balance for the two simulated years. 

61 In  order  to  assess  temporal  differences,  rainfall  events  of  varying  magnitude  were

studied. 
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Figure 9. Simulated interception (2010-2011) for rainfall events with hourly P > 5 mm (T = 1 month)
using the look-up table based and the Earth observation based approach.

62 Figure 9 ranks all hourly rainfall events with a return period of 1 month (P = 5 mm) or

longer  and  plots  the  interception  rates  for  both  approaches  (look-up  and  EO)  as  a

percentage of the precipitation. The results indicate a clear difference between heavy

rainfall events and smaller rainfall events. For the hourly rainfall events with a return

period of 10 years (P > 23 mm) or longer, interception is low (on average 3% of P), while

for hourly rainfall events with a return period of 1 year or more (P >12 mm) interception

amounts  to  around  13% of  precipitation.  For  the  hourly  rainfall  events  with  return

periods less than a year (P < 12 mm) it is worth mentioning that there are a large number

of events with little or no interception (marked in the box in Figure 9), deviating from the

overall trend. These low interception values are a result of a succession of events. Due to

the short return period it is more likely that the interception storage is still filled, so that

no or little interception can take place. When ignoring these events (box) the average

interception rates amount to 21% of the precipitation with maximum interception values

around 30%.

63 Regarding the difference between the EO and look-up table based approach, differences

seem small for rainfall events with longer return periods. The main differences occur for

events ranging between 5 and 10 mm. Also, for events with return periods shorter than a

month (P < 5 mm) large relative differences (up to 60-70%) are observed, however, due to

the low precipitation values the effect is limited. 

 

Conclusions

64 This study focused on the added value of  EO to monitor and assess the influence of

seasonal dynamics of  canopy interception storage on the urban water balance of  the

Upper Woluwe catchment, using the WetSpa model. To obtain spatially distributed and

location-specific values for interception storage capacity use was made of the leaf area

index (LAI) as an indicator for vegetation status. 

65 With respect to the parameterisation of interception storage capacity for broadleaf tree

vegetation, the proposed EO based approach yields considerable differences in canopy

interception rates compared to the original  WetSpa look-up table based method.  For
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minimum conditions  (winter/spring)  EO  canopy  interception  estimates  for  broadleaf

trees are considerably higher. For maximum conditions (summer/autumn) both methods

yield  similar  estimates.  Analysis  of  the  use  of  sealed  surface  proportions  for  the

estimation of  interception storage for  mixed urban pixels  reveals  considerably lower

interception under maximum conditions when using the original  look-up table based

approach. This suggests an underestimation of interception storage when these sealed

surface proportions are not considered. Comparison of the EO based method and the

original look-up table based approach also reveals important spatial differences. Due to a

lack of proper field data though, validation is difficult to accomplish. Spatially explicit

field validation forms a major challenge for future research.

66 With regard to  the hydrological  impacts  in  the Upper  Woluwe River  catchment,  the

sensitivity analysis shows that EO based estimates of interception storage capacity are

around  25%  higher  than  the  original  look-up  table  based  estimates,  resulting  in  an

increase of 10% of the simulated cumulative interception (over a 2-year period). Analysis

of  interception  rates  linked  to  rainfall  events  with  varying  intensity  shows  that  on

average interception rates are decreasing with rainfall intensity. Rainfall events ranging

between 5 and 10 mm (T < 1 year) show the biggest difference in EO and look-up table

based interception rates. 

67 To conclude it is important to state that, despite the fact that the EO-based methodology

presented aims at offering an alternative for site- and period-specific quantification of

interception storage, the findings in this paper are primarily valid for the catchment and

the time period studied. Results need to be confirmed by extending the approach to a

multi-year analysis using more imagery and a longer time series, preferably accompanied

by (extensive) ground truthing.
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ABSTRACTS

Vegetation is often represented in an oversimplified way in hydrological models for urbanised

catchments, resulting in a generalised parameterisation of urban green. This is common practice,

despite the fact that some studies clearly indicate that both the coverage and influence of urban

green is often underestimated. In general vegetated surfaces play an important role as areas of

recharge, for the redistribution of precipitation and in the regulation of surface runoff, especially

for  medium  intensity  storms.  Hence,  a  more  realistic  and  spatially  distributed  vegetation

parameterisation would be of high value for hydrological modelling in urban catchments. In this

paper an Earth observation based methodology is presented as an alternative to quantify the

influence of canopy interception storage as well as the influence of seasonal dynamics on the

urban  water  balance. Results  indicate  that  Earth  observation  based  interception  storage

capacities for the Upper Woluwe catchment (Brussels) are up to 25% higher than values obtained

from literature, resulting in an increase of cumulative interception rates with 10% over a two

year  period.  The  results  seem  to  vary  with  the  rainfall  intensity as  well  as  with seasonal

dynamics. In order to prove the general applicability of the proposed approach, these results

need further confirmation using multi-year analyses and preferably a validation with ground

truthing, which is a challenging future task.

In een stedelijke context wordt vegetatie vaak op een overmatig eenvoudige manier voorgesteld

in hydrologische modellen. Dit resulteert meestal in een zeer ruwe parameterisering van urbaan

groen. Deze benadering is wijd verspreid, ondanks het feit dat studies aantonen dat zowel de

dekking,  als  de  invloed  van  stedelijk  groen  vaak  onderschat  wordt.  Begroeide  oppervlakken

spelen een belangrijke rol inzake infiltratie in de bodem en de aanvulling van grondwater, de

herverdeling  van neerslag  en de  regulering  van oppervlakkige  afvoer,  in  het  bijzonder  voor

middelgrote  stormen.  Dit  maakt  dat  een  meer  realistische  en  ruimtelijk  verdeelde

parameterisering  van  urbane  vegetatie  van  grote  waarde  kan  zijn  voor  de  modellering  van

stedelijke  waterbekkens.  In  deze  paper  wordt  een  aardobservatie  gebaseerde  methode

voorgesteld voor de kwantificering van interceptie door het stedelijk landschap (vnl. vegetatieve

landschapselementen zoals bomen, struiken, etc.), alsook de seizoenale dynamiek en de invloed

op de stedelijke waterbalans. De resultaten tonen dat de aardobservatie gebaseerde interceptie in

het  bovenstrooms  gedeelte  van  het  Woluwe-bekken  (Brussel)  tot  25%  hoger  liggen  dan  de

waarden gebaseerd op literatuur. Over een periode van 2 jaar betekent dit een toename met 10%

van de cumulatieve interceptie. De interceptiewaarden blijken ook te variëren in functie van de

neerslagintensiteit en vertonen een seizoenale dynamiek. Een meerjarige analyse, bij voorkeur

met grondmetingen, is noodzakelijk om de bekomen resultaten te bevestigen, wat een uitdaging

vormt voor de toekomst.
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