203 research outputs found

    Effects of organic herbicides on phototrophic microbial communities in freshwater ecosystems

    Get PDF
    Over the past 15 years, significant research efforts have been channelled into assessing the effects of organic herbicides on freshwater phototrophic microbial communities. The results of this research are reviewed herein. Main conclusions could be summarized into 5 points: - Most relevant assessments of this sort have dealt with the effects of triazine and phenylurea herbicides. Herbicides from these chemical classes are often considered to be model compounds when photosystem-II inhibitors are studied. - Until the early 2000s, the vast majority of investigations conducted to evaluate herbicide effects on phototropic microbes were performed in micro- or meso-cosms. In such studies, herbicides were usually applied alone, and often at concentrations much higher than those detected in the environment. More recently, the trend has been towards more realistic and relevant studies, in which lower herbicide concentrations were considered, and compound mixtures or successive treatments were tested. Increasingly, in situ studies are being designed to directly evaluate microbial community responses, following chemical exposures in contaminated aquatic environments. - Several biological endpoints are used to evaluate how organisms in the phototrophic microbial community respond to herbicide exposure. These endpoints allow the detection of quantitative changes, such as chl a concentrations, total cell counts or periphytic biomass, qualitative changes such as community structure to algal diversity, or functional changes such as photosynthesis, respiration, etc. They could give different and complementary information concerning the responses of microbial communities. - In addition, PICT approaches, which have generally combined functional and structural measurements, may prove to be valuable for assessing both an immediate impact, and for factoring in the contamination history of an ecosystem at the community level. - A relevant assessment of pesticides effects should include details on environmental characterization, such as abiotic parameters (light, flow speed, nutrients content) or biotic parameters (diversity and structure of biofilms), as they control the bioavailability of pesticides and the exposure of microbial communities. To improve the value of ecotoxicological risk assessments, future research is needed in two key areas: first, the effects of pollutants at the community level must be detailed (new tools and new end points), and second, more effort must be directed to reinforcing the ecological relevance of toxicological investigations

    Recommendations for the preservation of environmental samples in diatom metabarcoding studies

    Get PDF
    Implementation of DNA metabarcoding for diatoms for environmental monitoring is now moving from a research to an operational phase, requiring rigorous guidelines and standards. In particular, the first steps of the diatom metabarcoding process, which consist of sampling and storage, have been addressed in various ways in scientific and pilot studies and now need to be rationalised. The objective of this study was to compare three currently applied preservation protocols through different storage durations (ranging from one day to one year) for phytobenthos and phytoplankton samples intended for diatom DNA metabarcoding analysis. The experimental design used samples from four freshwater and two marine sites of diverse ecological characteristics. The impact of the sample preservation and storage duration was assessed through diatom metabarcoding endpoints: DNA quality and quantity, diversity and richness, diatom assemblage composition and ecological index values (for freshwater samples). The yield and quality of extracted DNA only decreased for freshwater phytobenthos samples preserved with ethanol. Diatom diversity was not affected and their taxonomic composition predominantly reflected the site origin. Only rare taxa

    Recommendations for the preservation of environmental samples in diatom metabarcoding studies

    Get PDF
    Implementation of DNA metabarcoding for diatoms for environmental monitoring is now moving from a research to an operational phase, requiring rigorous guidelines and standards. In particular, the first steps of the diatom metabarcoding process, which consist of sampling and storage, have been addressed in various ways in scientific and pilot studies and now need to be rationalised. The objective of this study was to compare three currently applied preservation protocols through different storage durations (ranging from one day to one year) for phytobenthos and phytoplankton samples intended for diatom DNA metabarcoding analysis. The experimental design used samples from four freshwater and two marine sites of diverse ecological characteristics. The impact of the sample preservation and storage duration was assessed through diatom metabarcoding endpoints: DNA quality and quantity, diversity and richness, diatom assemblage composition and ecological index values (for freshwater samples). The yield and quality of extracted DNA only decreased for freshwater phytobenthos samples preserved with ethanol. Diatom diversity was not affected and their taxonomic composition predominantly reflected the site origin. Only rare taxa

    Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive

    Get PDF
    Assessment of ecological status for the European Water Framework Directive (WFD) is based on “Biological Quality Elements” (BQEs), namely phytoplankton, benthic flora, benthic invertebrates and fish. Morphological identification of these organisms is a time-consuming and expensive procedure. Here, we assess the options for complementing and, perhaps, replacing morphological identification with procedures using eDNA, metabarcoding or similar approaches. We rate the applicability of DNA-based identification for the individual BQEs and water categories (rivers, lakes, transitional and coastal waters) against eleven criteria, summarised under the headlines representativeness (for example suitability of current sampling methods for DNA-based identification, errors from DNA-based species detection), sensitivity (for example capability to detect sensitive taxa, unassigned reads), precision of DNA-based identification (knowledge about uncertainty), comparability with conventional approaches (for example sensitivity of metrics to differences in DNA-based identification), cost effectiveness and environmental impact. Overall, suitability of DNA-based identification is particularly high for fish, as eDNA is a well-suited sampling approach which can replace expensive and potentially harmful methods such as gill-netting, trawling or electrofishing. Furthermore, there are attempts to replace absolute by relative abundance in metric calculations. For invertebrates and phytobenthos, the main challenges include the modification of indices and completing barcode libraries. For phytoplankton, the barcode libraries are even more problematic, due to the high taxonomic diversity in plankton samples. If current assessment concepts are kept, DNA-based identification is least appropriate for macrophytes (rivers, lakes) and angiosperms/macroalgae (transitional and coastal waters), which are surveyed rather than sampled. We discuss general implications of implementing DNA-based identification into standard ecological assessment, in particular considering any adaptations to the WFD that may be required to facilitate the transition to molecular data

    Autumn drought drives functional diversity of benthic diatom assemblages of continental intermittent streams

    Get PDF
    International audienceClimate change is predicted to increase drought occurrence and severity in small continental watercourses. Here, we studied the structure and the functional diversity of benthic diatom assemblages in lowland intermittent and permanent watercourses of the Carpathian Basin. We assumed that the community structure of intermittent and permanent watercourses would be markedly different, and the functional diversity in both would be strongly influenced by autumn drought. We found that intermittent streams were primarily characterized by small-sized generalists and aerophilic taxa, while permanent watercourses were inhabited by large-sized planktic or fast moving groups. The functional richness was significantly lower in intermittent than in permanent streams. This decrease in the functional richness of benthic algal communities may negatively affect the functioning of lotic algal communities. We conclude that diatom assemblages in lowland intermittent watercourses are sensitive indicators of changes in ecosystem properties, and should be considered in appropriate evaluation and management of extreme climatic events on aquatic ecosystems

    Ecosystems monitoring powered by environmental genomics: a review of current strategies with an implementation roadmap

    Get PDF
    A decade after environmental scientists integrated high-throughput sequencing technologies in their toolbox, the genomics-based monitoring of anthropogenic impacts on the biodiversity and functioning of ecosystems is yet to be implemented by regulatory frameworks. Despite the broadly acknowledged potential of environmental genomics to this end, technical limitations and conceptual issues still stand in the way of its broad application by end-users. In addition, the multiplicity of potential implementation strategies may contribute to a perception that the routine application of this methodology is premature or “in development”, hence restraining regulators from binding these tools into legal frameworks. Here, we review recent implementations of environmental genomics-based methods, applied to the biomonitoring of ecosystems. By taking a general overview, without narrowing our perspective to particular habitats or groups of organisms, this paper aims to compare, review and discuss the strengths and limitations of four general implementation strategies of environmental genomics for monitoring: (a) Taxonomy-based analyses focused on identification of known bioindicators or described taxa; (b) De novo bioindicator analyses; (c) Structural community metrics including inferred ecological networks; and (d) Functional community metrics (metagenomics or metatranscriptomics). We emphasise the utility of the three latter strategies to integrate meiofauna and microorganisms that are not traditionally utilised in biomonitoring because of difficult taxonomic identification. Finally, we propose a roadmap for the implementation of environmental genomics into routine monitoring programmes that leverage recent analytical advancements, while pointing out current limitations and future research needs.publishedVersio

    Why we need sustainable networks bridging countries, disciplines, cultures and generations for Aquatic Biomonitoring 2.0: A Perspective Derived From the DNAqua-Net COST Action

    Get PDF
    Aquatic biomonitoring has become an essential task in Europe and many other regions as a consequence of strong anthropogenic pressures affecting the health of lakes, rivers, oceans and groundwater. A typical assessment of the environmental quality status, such as it is required by European but also North American and other legislation, relies on matching the composition of assemblages of organisms identified using morphological criteria present in aquatic ecosystems to those expected in the absence of anthropogenic pressures. Through decade-long and difficult intercalibration exercises among networks of regulators and scientists in European countries, a pragmatic biomonitoring approach was developed and adopted, which now produces invaluable information. Nonetheless, this approach is based on several hundred different protocols, making it susceptible to issues with comparability, scale and resolution. Furthermore, data acquisition is often slow due to a lack of taxonomic experts for many taxa and regions and time-consuming morphological identification of organisms. High-throughput genetic screening methods such as (e)DNA metabarcoding have been proposed as a possible solution to these shortcomings. Such "next-generation biomonitoring", also termed "biomonitoring 2.0", has many advantages over the traditional approach in terms of speed, comparability and costs. It also creates the potential to include new bioindicators and thereby further improves the assessment of aquatic ecosystem health. However, several major conceptual and technological challenges still hinder its implementation into legal and regulatory frameworks. Academic scientists sometimes tend to overlook legal or socioeconomic constraints, which regulators have to consider on a regular basis. Moreover, quantification of species abundance or biomass remains a significant bottleneck to releasing the full potential of these approaches. Here, we highlight the main challenges for next-generation aquatic biomonitoring and outline principles and good practicCOST - European Cooperation in Science and Technology(CA15219). COST Action DNAqua-Net (CA15219), supported by the COST (European Cooperation in Science and Technology) programm

    Efficiency of the use of doubled-haploids in recurrent selection for combining ability

    No full text
    International audienc
    • …
    corecore