3,306 research outputs found

    A prototype for the AMS-RICH experiment

    Get PDF
    The AMS spectrometer will be installed on the International Space Station in 2005. Among other improvements over the first version of the instrument, a ring imaging Cherenkov detector (RICH) will be added and should open a new window for cosmic-ray physics, allowing isotope separation up to A = 25 between 1 and 10 GeV/c and element identification up to Z = 25 between threshold and 1 TeV/c/nucleon. It should also contribute to the high level of redundancy required for AMS and reject efficiency albedo particles. A second generation prototype has been operated for a few months : the architecture and the first results are presented.Comment: Proceedings of the 3rd International Conference on "New developments in photodetection" (Beaune - France

    Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with respect to the {I,H,N}^n Transform

    Full text link
    We enumerate the inequivalent self-dual additive codes over GF(4) of blocklength n, thereby extending the sequence A090899 in The On-Line Encyclopedia of Integer Sequences from n = 9 to n = 12. These codes have a well-known interpretation as quantum codes. They can also be represented by graphs, where a simple graph operation generates the orbits of equivalent codes. We highlight the regularity and structure of some graphs that correspond to codes with high distance. The codes can also be interpreted as quadratic Boolean functions, where inequivalence takes on a spectral meaning. In this context we define PAR_IHN, peak-to-average power ratio with respect to the {I,H,N}^n transform set. We prove that PAR_IHN of a Boolean function is equivalent to the the size of the maximum independent set over the associated orbit of graphs. Finally we propose a construction technique to generate Boolean functions with low PAR_IHN and algebraic degree higher than 2.Comment: Presented at Sequences and Their Applications, SETA'04, Seoul, South Korea, October 2004. 17 pages, 10 figure

    Dessins, their delta-matroids and partial duals

    Full text link
    Given a map M\mathcal M on a connected and closed orientable surface, the delta-matroid of M\mathcal M is a combinatorial object associated to M\mathcal M which captures some topological information of the embedding. We explore how delta-matroids associated to dessins d'enfants behave under the action of the absolute Galois group. Twists of delta-matroids are considered as well; they correspond to the recently introduced operation of partial duality of maps. Furthermore, we prove that every map has a partial dual defined over its field of moduli. A relationship between dessins, partial duals and tropical curves arising from the cartography groups of dessins is observed as well.Comment: 34 pages, 20 figures. Accepted for publication in the SIGMAP14 Conference Proceeding

    On the Classification of All Self-Dual Additive Codes over GF(4) of Length up to 12

    Get PDF
    We consider additive codes over GF(4) that are self-dual with respect to the Hermitian trace inner product. Such codes have a well-known interpretation as quantum codes and correspond to isotropic systems. It has also been shown that these codes can be represented as graphs, and that two codes are equivalent if and only if the corresponding graphs are equivalent with respect to local complementation and graph isomorphism. We use these facts to classify all codes of length up to 12, where previously only all codes of length up to 9 were known. We also classify all extremal Type II codes of length 14. Finally, we find that the smallest Type I and Type II codes with trivial automorphism group have length 9 and 12, respectively.Comment: 18 pages, 4 figure

    Algebraic Correlation Function and Anomalous Diffusion in the HMF model

    Get PDF
    In the quasi-stationary states of the Hamiltonian Mean-Field model, we numerically compute correlation functions of momenta and diffusion of angles with homogeneous initial conditions. This is an example, in a N-body Hamiltonian system, of anomalous transport properties characterized by non exponential relaxations and long-range temporal correlations. Kinetic theory predicts a striking transition between weak anomalous diffusion and strong anomalous diffusion. The numerical results are in excellent agreement with the quantitative predictions of the anomalous transport exponents. Noteworthy, also at statistical equilibrium, the system exhibits long-range temporal correlations: the correlation function is inversely proportional to time with a logarithmic correction instead of the usually expected exponential decay, leading to weak anomalous transport properties

    Quasi-local evolution of cosmic gravitational clustering in the weakly non-linear regime

    Full text link
    We investigate the weakly non-linear evolution of cosmic gravitational clustering in phase space by looking at the Zel'dovich solution in the discrete wavelet transform (DWT) representation. We show that if the initial perturbations are Gaussian, the relation between the evolved DWT mode and the initial perturbations in the weakly non-linear regime is quasi-local. That is, the evolved density perturbations are mainly determined by the initial perturbations localized in the same spatial range. Furthermore, we show that the evolved mode is monotonically related to the initial perturbed mode. Thus large (small) perturbed modes statistically correspond to the large (small) initial perturbed modes. We test this prediction by using QSO Lyα\alpha absorption samples. The results show that the weakly non-linear features for both the transmitted flux and identified forest lines are quasi-localized. The locality and monotonic properties provide a solid basis for a DWT scale-by-scale Gaussianization reconstruction algorithm proposed by Feng & Fang (Feng & Fang, 2000) for data in the weakly non-linear regime. With the Zel'dovich solution, we find also that the major non-Gaussianity caused by the weakly non-linear evolution is local scale-scale correlations. Therefore, to have a precise recovery of the initial Gaussian mass field, it is essential to remove the scale-scale correlations.Comment: 22 pages, 13 figures. Accepted for publication in the Astrophysical Journa

    Dynamics of pairwise motions

    Get PDF
    We derive a simple closed-form expression, relating \vs(r) -- the mean relative velocity of pairs of galaxies at fixed separation rr -- to the two-point correlation function of mass density fluctuations, Ο(r)\xi(r). We compare our analytic model for \vs(r) with N-body simulations, and find excellent agreement in the entire dynamical range probed by the simulations (0.1 \lsim \xi \lsim 1000). Our results can be used to estimate the cosmological density parameter, \Om, directly from redshift-distance surveys, like Mark III.Comment: 10 pages 2 Figs., submitted to ApJ Let

    The Bispectrum of IRAS Galaxies

    Full text link
    We compute the bispectrum for the galaxy distribution in the IRAS QDOT, 2Jy, and 1.2Jy redshift catalogs for wavenumbers 0.05<k<0.2 h/Mpc and compare the results with predictions from gravitational instability in perturbation theory. Taking into account redshift space distortions, nonlinear evolution, the survey selection function, and discreteness and finite volume effects, all three catalogs show evidence for the dependence of the bispectrum on configuration shape predicted by gravitational instability. Assuming Gaussian initial conditions and local biasing parametrized by linear and non-linear bias parameters b_1 and b_2, a likelihood analysis yields 1/b_1 = 1.32^{+0.36}_{-0.58}, 1.15^{+0.39}_{-0.39} and b_2/b_1^2=-0.57^{+0.45}_{-0.30}, -0.50^{+0.31}_{-0.51}, for the for the 2Jy and 1.2Jy samples, respectively. This implies that IRAS galaxies trace dark matter increasingly weakly as the density contrast increases, consistent with their being under-represented in clusters. In a model with chi^2 non-Gaussian initial conditions, the bispectrum displays an amplitude and scale dependence different than that found in the Gaussian case; if IRAS galaxies do not have bias b_1> 1 at large scales, \chi^2 non-Gaussian initial conditions are ruled out at the 95% confidence level. The IRAS data do not distinguish between Lagrangian or Eulerian local bias.Comment: 30 pages, 11 figure

    Probability distribution of density fluctuations in the non-linear regime

    Get PDF
    We present a general procedure for obtaining the present density fluctuation probability distribution given the statistics of the initial conditions. The main difficulties faced with regard to this problem are those related to the non-linear evolution of the density fluctuations and those posed by the fact that the fields we are interested in are the result of filtering an underlying field with structure down to scales much smaller than that of filtering. The solution to the latter problem is discussed here in detail and the solution to the former is taken from a previous work. We have checked the procedure for values of the rms density fluctuation as large as 3/2 and several power spectra and found that it leads to results in excellent agreement with those obtained in numerical simulations. We also recover all available exact results from perturbation theory.Comment: Accepted to be published in Ap
    • 

    corecore