We compute the bispectrum for the galaxy distribution in the IRAS QDOT, 2Jy,
and 1.2Jy redshift catalogs for wavenumbers 0.05<k<0.2 h/Mpc and compare the
results with predictions from gravitational instability in perturbation theory.
Taking into account redshift space distortions, nonlinear evolution, the survey
selection function, and discreteness and finite volume effects, all three
catalogs show evidence for the dependence of the bispectrum on configuration
shape predicted by gravitational instability. Assuming Gaussian initial
conditions and local biasing parametrized by linear and non-linear bias
parameters b_1 and b_2, a likelihood analysis yields 1/b_1 =
1.32^{+0.36}_{-0.58}, 1.15^{+0.39}_{-0.39} and b_2/b_1^2=-0.57^{+0.45}_{-0.30},
-0.50^{+0.31}_{-0.51}, for the for the 2Jy and 1.2Jy samples, respectively.
This implies that IRAS galaxies trace dark matter increasingly weakly as the
density contrast increases, consistent with their being under-represented in
clusters. In a model with chi^2 non-Gaussian initial conditions, the bispectrum
displays an amplitude and scale dependence different than that found in the
Gaussian case; if IRAS galaxies do not have bias b_1> 1 at large scales, \chi^2
non-Gaussian initial conditions are ruled out at the 95% confidence level. The
IRAS data do not distinguish between Lagrangian or Eulerian local bias.Comment: 30 pages, 11 figure