4,261 research outputs found

    Structure Learning in Motor Control:A Deep Reinforcement Learning Model

    Full text link
    Motor adaptation displays a structure-learning effect: adaptation to a new perturbation occurs more quickly when the subject has prior exposure to perturbations with related structure. Although this `learning-to-learn' effect is well documented, its underlying computational mechanisms are poorly understood. We present a new model of motor structure learning, approaching it from the point of view of deep reinforcement learning. Previous work outside of motor control has shown how recurrent neural networks can account for learning-to-learn effects. We leverage this insight to address motor learning, by importing it into the setting of model-based reinforcement learning. We apply the resulting processing architecture to empirical findings from a landmark study of structure learning in target-directed reaching (Braun et al., 2009), and discuss its implications for a wider range of learning-to-learn phenomena.Comment: 39th Annual Meeting of the Cognitive Science Society, to appea

    Generating descriptive text from functional brain images

    Get PDF
    Recent work has shown that it is possible to take brain images of a subject acquired while they saw a scene and reconstruct an approximation of that scene from the images. Here we show that it is also possible to generate _text_ from brain images. We began with images collected as participants read names of objects (e.g., ``Apartment'). Without accessing information about the object viewed for an individual image, we were able to generate from it a collection of semantically pertinent words (e.g., "door," "window"). Across images, the sets of words generated overlapped consistently with those contained in articles about the relevant concepts from the online encyclopedia Wikipedia. The technique described, if developed further, could offer an important new tool in building human computer interfaces for use in clinical settings

    Cognitive control: componential or emergent?

    Get PDF
    The past twenty-five years have witnessed an increasing awareness of the importance of cognitive control in the regulation of complex behavior. It now sits alongside attention, memory, language and thinking as a distinct domain within cognitive psychology. At the same time it permeates each of these sibling domains. This paper reviews recent work on cognitive control in an attempt to provide a context for the fundamental question addressed within this Topic: is cognitive control to be understood as resulting from the interaction of multiple distinct control processes or are the phenomena of cognitive control emergent

    High-throughput screening of encapsulated islets using wide-field lens-free on-chip imaging

    Full text link
    Islet microencapsulation is a promising solution to diabetes treatment, but its quality control based on manual microscopic inspection is extremely low-throughput, highly variable and laborious. This study presents a high-throughput islet-encapsulation quality screening system based on lens-free on-chip imaging with a wide field-of-view of 18.15 cm^2, which is more than 100 times larger than that of a lens-based optical microscope, enabling it to image and analyze ~8,000 microcapsules in a single frame. Custom-written image reconstruction and processing software provides the user with clinically important information, such as microcapsule count, size, intactness, and information on whether each capsule contains an islet. This high-throughput and cost-effective platform can be useful for researchers to develop better encapsulation protocols as well as perform quality control prior to transplantation
    corecore